首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3067篇
  免费   246篇
  国内免费   1篇
  2022年   48篇
  2021年   88篇
  2020年   42篇
  2019年   55篇
  2018年   69篇
  2017年   52篇
  2016年   86篇
  2015年   140篇
  2014年   182篇
  2013年   210篇
  2012年   242篇
  2011年   209篇
  2010年   151篇
  2009年   115篇
  2008年   169篇
  2007年   143篇
  2006年   156篇
  2005年   125篇
  2004年   122篇
  2003年   118篇
  2002年   106篇
  2001年   34篇
  2000年   28篇
  1999年   28篇
  1998年   23篇
  1997年   16篇
  1996年   19篇
  1995年   13篇
  1994年   20篇
  1993年   18篇
  1992年   27篇
  1991年   27篇
  1990年   19篇
  1989年   20篇
  1988年   14篇
  1987年   26篇
  1986年   22篇
  1985年   18篇
  1984年   25篇
  1983年   17篇
  1982年   19篇
  1981年   13篇
  1979年   27篇
  1976年   13篇
  1975年   18篇
  1974年   18篇
  1973年   16篇
  1972年   15篇
  1971年   14篇
  1970年   15篇
排序方式: 共有3314条查询结果,搜索用时 31 毫秒
141.
Human Suv3 is a unique homodimeric helicase that constitutes the major component of the mitochondrial degradosome to work cooperatively with exoribonuclease PNPase for efficient RNA decay. However, the molecular mechanism of how Suv3 is assembled into a homodimer to unwind RNA remains elusive. Here, we show that dimeric Suv3 preferentially binds to and unwinds DNA–DNA, DNA–RNA, and RNA–RNA duplexes with a long 3′ overhang (≥10 nucleotides). The C‐terminal tail (CTT)‐truncated Suv3 (Suv3ΔC) becomes a monomeric protein that binds to and unwinds duplex substrates with ~six to sevenfold lower activities relative to dimeric Suv3. Only dimeric Suv3, but not monomeric Suv3ΔC, binds RNA independently of ATP or ADP, and is capable of interacting with PNPase, indicating that dimeric Suv3 assembly ensures its continuous association with RNA and PNPase during ATP hydrolysis cycles for efficient RNA degradation. We further determined the crystal structure of the apo‐form of Suv3ΔC, and SAXS structures of dimeric Suv3 and PNPase–Suv3 complex, showing that dimeric Suv3 caps on the top of PNPase via interactions with S1 domains, and forms a dumbbell‐shaped degradosome complex with PNPase. Overall, this study reveals that Suv3 is assembled into a dimeric helicase by its CTT for efficient and persistent RNA binding and unwinding to facilitate interactions with PNPase, promote RNA degradation, and maintain mitochondrial genome integrity and homeostasis.  相似文献   
142.
The active sites of the proteasome are housed within its central core particle (CP), a barrel-shaped chamber of four stacked heptameric rings, and access of substrates to the CP interior is mediated by gates at either axial end. These gates are constitutively closed and may be opened by the regulatory particle (RP), which binds the CP and facilitates substrate degradation. We recently showed that the heterodimeric CP assembly chaperones Pba1/2 also mediate gate opening through an unexpected structural arrangement that facilitates the insertion of the N terminus of Pba1 into the CP interior; however, the full mechanism of Pba1/2-mediated gate opening is unclear. Here, we report a detailed analysis of CP gate modulation by Pba1/2. The clustering of key residues at the interface between neighboring α-subunits is a critical feature of RP-mediated gate opening, and we find that Pba1/2 recapitulate this strategy. Unlike RP, which inserts at six α-subunit interfaces, Pba1/2 insert at only two α-subunit interfaces. Nevertheless, Pba1/2 are able to regulate six of the seven interfacial clusters, largely through direct interactions. The N terminus of Pba1 also physically interacts with the center of the gate, disrupting the intersubunit contacts that maintain the closed state. This novel mechanism of gate modulation appears to be unique to Pba1/2 and therefore likely occurs only during proteasome assembly. Our data suggest that release of Pba1/2 at the conclusion of assembly is what allows the nascent CP to assume its mature gate conformation, which is primarily closed, until activated by RP.  相似文献   
143.
Former studies have established that loss of heterozygosity can be a key driver of sequence evolution in unicellular eukaryotes and tissues of metazoans. However, little is known about whether the distribution of loss of heterozygosity events is largely random or forms discernible patterns across genomes. To initiate our experiments, we introduced selectable markers to both arms of all chromosomes of the budding yeast. Subsequent extensive assays, repeated over several genetic backgrounds and environments, provided a wealth of information on the genetic and environmental determinants of loss of heterozygosity. Three findings stand out. First, the number of loss of heterozygosity events per unit time was more than 25 times higher for growing than starving cells. Second, loss of heterozygosity was most frequent when regions of homology around a recombination site were identical, about a half-% sequence divergence was sufficient to reduce its incidence. Finally, the density of loss of heterozygosity events was highly dependent on the genome’s physical architecture. It was several-fold higher on short chromosomal arms than on long ones. Comparably large differences were seen within a single arm where regions close to a centromere were visibly less affected than regions close, though usually not strictly adjacent, to a telomere. We suggest that the observed uneven distribution of loss of heterozygosity events could have been caused not only by an uneven density of initial DNA damages. Location-depended differences in the mode of DNA repair, or its effect on fitness, were likely to operate as well.  相似文献   
144.
145.
The human immunodeficiency virus type 1 (HIV-1) Nef protein is an important determinant of AIDS pathogenesis. We have previously reported that HIV-1 Nef is responsible for the induction of a severe AIDS-like disease in CD4C/HIV transgenic (Tg) mice. To understand the molecular mechanisms of this Nef-induced disease, we generated Tg mice expressing a mutated Nef protein in which the SH3 ligand-binding domain (P(72)XXP(75)XXP(78)) was mutated to A(72)XXA(75)XXQ(78). This mutation completely abolished the pathogenic potential of Nef, although a partial downregulation of the CD4 cell surface expression was still observed in these Tg mice. We also studied whether Hck, one of the effectors previously found to bind to this PXXP motif of Nef, was involved in disease development. Breeding of Tg mice expressing wild-type Nef on an hck(-/-) (knockout) background did not abolish any of the pathological phenotypes. However, the latency of disease development was prolonged. These data indicate that an intact PXXP domain is essential for inducing an AIDS-like disease in CD4C/HIV Tg mice and suggest that interaction of a cellular effector(s) with this domain is required for the induction of this multiorgan disease. Our findings indicate that Hck is an important, but not an essential, effector of Nef and suggest that another factor(s), yet to be identified, may be more critical for disease development.  相似文献   
146.
147.
Pentosidine is an advanced glycation end-product (AGE) appearing when arginine and lysine residues in proteins are cross-linked with carbonyl derivatives. This paper presents an improved method for the synthesis of pentosidine and reversed-phase chromatography of this substance with fluorometric detection that enables sensitive (0.01 pmol/mg protein) and specific determination of pentosidine in plasma. Separation is done twice on the same C(18) Vydac 218TP54 column, first with trifluoroacetic acid and next with heptafluorobutyric acid as ion pair. The inter-day coefficient of variation is 6.4% at pentosidine concentration in plasma of 25 pmol/mg protein and 8% at 1.7 pmol/mg protein. Spectral properties of pentosidine exploited during identification of the substance with UV absorption and fluorescence detectors are described. Maximum of absorbance was observed at 325 nm, maximum fluorescence at lambda(ex)/lambda(em)=330/373 nm. The method may prove useful for the study of processes associated with generation and accumulation of pentosidine in the body as a marker of AGE production in healthy subjects and patients with chronic renal failure.  相似文献   
148.
The mitochondrial genomes of some Phaseolus species contain a fragment of chloroplast trnA gene intron, named pvs-trnA for its location within the Phaseolus vulgaris sterility sequence (pvs). The purpose of this study was to determine the type of transfer (intracellular or horizontal) that gave rise to pvs-trnA. Using a PCR approach we could not find the respective portion of the trnA gene as a part of pvs outside the Phaseolus genus. However, a BLAST search revealed longer fragments of trnA present in the mitochondrial genomes of some Citrus species, Helianthus annuus and Zea mays. Basing on the identity or near-identity between these mitochondrial sequences and their chloroplast counterparts we concluded that they had relocated from chloroplasts to mitochondria via recent, independent, intracellular DNA transfers. In contrast, pvs-trnA displayed a relatively higher sequence divergence when compared with its chloroplast counterpart from Phaseolus vulgaris. Alignment of pvs-trnA with corresponding trnAfragments from 35 plant species as well as phylogenetic analysis revealed that pvs-trnA grouped with non-eudicot sequences and was well separated from all Fabalessequences. In conclusion, we propose that pvs-trnA arose via horizontal transfer of a trnA intron fragment from chloroplast of a non-eudicot plant to Phaseolus mitochondria. This is the first example of horizontal transfer of a chloroplast sequence to the mitochondrial genome in higher plants.  相似文献   
149.
150.
Trefoil factor family (TFF) domain peptides, products of mucin-secreting epithelial cells, are thought to influence mucosal integrity. Molecular studies revealed that mammalian TFFs lack transmembrane domains. Using immunocytochemistry and FACS analysis we demonstrated the association of TFF1 with the cell membrane in MCF-7 (a breast adenocarcinoma cell line), and tested the hypothesis that glycosylphosphatidylinositol (GPI) linkage is the mechanism for this association. Cleavage of GPI anchorage using phospholipase C did not affect TFF1 binding to the cell membrane. Our results demonstrate for the first time that TFF1 is associated with the cell membrane of MCF-7 cells and is not linked via a GPI anchor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号