全文获取类型
收费全文 | 243篇 |
免费 | 49篇 |
国内免费 | 1篇 |
专业分类
293篇 |
出版年
2022年 | 3篇 |
2021年 | 3篇 |
2020年 | 6篇 |
2019年 | 3篇 |
2018年 | 6篇 |
2017年 | 3篇 |
2016年 | 13篇 |
2015年 | 14篇 |
2014年 | 9篇 |
2013年 | 12篇 |
2012年 | 16篇 |
2011年 | 15篇 |
2010年 | 11篇 |
2009年 | 8篇 |
2008年 | 9篇 |
2007年 | 7篇 |
2006年 | 4篇 |
2005年 | 4篇 |
2004年 | 6篇 |
2003年 | 5篇 |
2001年 | 14篇 |
2000年 | 5篇 |
1999年 | 7篇 |
1998年 | 11篇 |
1997年 | 8篇 |
1995年 | 10篇 |
1994年 | 4篇 |
1993年 | 6篇 |
1992年 | 11篇 |
1991年 | 4篇 |
1990年 | 9篇 |
1988年 | 4篇 |
1987年 | 4篇 |
1986年 | 4篇 |
1985年 | 6篇 |
1984年 | 2篇 |
1980年 | 1篇 |
1979年 | 5篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1975年 | 4篇 |
1974年 | 1篇 |
1971年 | 1篇 |
1969年 | 1篇 |
1967年 | 1篇 |
1966年 | 1篇 |
1954年 | 1篇 |
1928年 | 1篇 |
1910年 | 1篇 |
排序方式: 共有293条查询结果,搜索用时 19 毫秒
61.
Reactive oxygen species production and activation mechanism of the rice NADPH oxidase OsRbohB 总被引:1,自引:0,他引:1
Takahashi S Kimura S Kaya H Iizuka A Wong HL Shimamoto K Kuchitsu K 《Journal of biochemistry》2012,152(1):37-43
Reactive oxygen species (ROS) produced by plant NADPH oxidases (NOXes) are important in plant innate immunity. The Oryza sativa respiratory burst oxidase homologue B (OsRbohB) gene encodes a NOX the regulatory mechanisms of which are largely unknown. Here, we used a heterologous expression system to demonstrate that OsRbohB shows ROS-producing activity. Treatment with ionomycin, a Ca(2+) ionophore, and calyculin A, a protein phosphatase inhibitor, activated ROS-producing activity; it was thus OsRbohB activated by both Ca(2+) and protein phosphorylation. Mutation analyses revealed that not only the first EF-hand motif but also the upstream amino-terminal region were necessary for Ca(2+)-dependent activation, while these regions are not required for phosphorylation-induced ROS production. 相似文献
62.
63.
Sekiguchi Lesion Gene Encodes a Cytochrome P450 Monooxygenase That Catalyzes Conversion of Tryptamine to Serotonin in Rice 总被引:1,自引:0,他引:1
64.
65.
EMMA L. WRIGHT COLIN R. BLACK ALEXANDER W. CHEESMAN TREVOR DRAGE DAVID LARGE BENJAMIN L. TURNER SOFIE SJÖGERSTEN 《Global Change Biology》2011,17(9):2867-2881
Tropical peatlands play an important role in the global carbon cycling but little is known about factors regulating carbon dioxide (CO2) and methane (CH4) fluxes from these ecosystems. Here, we test the hypotheses that (i) CO2 and CH4 are produced mainly from surface peat and (ii) that the contribution of subsurface peat to net C emissions is governed by substrate availability. To achieve this, in situ and ex situ CO2 and CH4 fluxes were determined throughout the peat profiles under three vegetation types along a nutrient gradient in a tropical ombrotrophic peatland in Panama. The peat was also characterized with respect to its organic composition using 13C solid state cross‐polarization magic‐angle spinning nuclear magnetic resonance spectroscopy. Deep peat contributed substantially to CO2 effluxes both with respect to actual in situ and potential ex situ fluxes. CH4 was produced throughout the peat profile with distinct subsurface peaks, but net emission was limited by oxidation in the surface layers. CO2 and CH4 production were strongly substrate‐limited and a large proportion of the variance in their production (30% and 63%, respectively) was related to the quantity of carbohydrates in the peat. Furthermore, CO2 and CH4 production differed between vegetation types, suggesting that the quality of plant‐derived carbon inputs is an important driver of trace gas production throughout the peat profile. We conclude that the production of both CO2 and CH4 from subsurface peat is a substantial component of the net efflux of these gases, but that gas production through the peat profile is regulated in part by the degree of decomposition of the peat. 相似文献
66.
Disruption of Myc-tubulin interaction by hyperphosphorylation of c-Myc during mitosis or by constitutive hyperphosphorylation of mutant c-Myc in Burkitt's lymphoma 下载免费PDF全文
Niklinski J Claassen G Meyers C Gregory MA Allegra CJ Kaye FJ Hann SR Zajac-Kaye M 《Molecular and cellular biology》2000,20(14):5276-5284
Somatic mutations at Thr-58 of c-Myc have been detected in Burkitt's lymphoma (BL) tumors and have been shown to affect the transforming potential of the Myc oncoprotein. In addition, the N-terminal domain of c-Myc has been shown to interact with microtubules in vivo, and the binding of c-Myc to alpha-tubulin was localized to amino acids 48 to 135 within the c-Myc protein. We demonstrate that c-Myc proteins harboring a naturally occurring mutation at Thr-58 from BL cell lines have increased stability and are constitutively hyperphosphorylated, which disrupts the in vivo interaction of c-Myc with alpha-tubulin. In addition, we show that wild-type c-Myc-alpha-tubulin interactions are also disrupted during a transient mitosis-specific hyperphosphorylation of c-Myc, which resembles the constitutive hyperphosphorylation pattern of Thr-58 in BL cells. 相似文献
67.
alpha-Chymotrypsin serves as a sole carbon source, sole nitrogen source, and as sole carbon plus nitrogen source for wild-type Escherichia coli in a totally defined medium. Hence, a mammalian host for E. coli may supply the necessary carbon and nitrogen nutrients for the microorganism. Growth is most rapid when chymotrypsin is a sole nitrogen source and least rapid with chymotrypsin as a carbon source. The approximate doubling times for E. coli utilizing chymotrypsin as a nitrogen source, carbon plus nitrogen source, and carbon source are 1.6, 4.6, and 11.3 h, respectively. The activity of the residual enzyme in the culture supernates falls off asymptotically over the source of time, as followed by cleavage of glutaryl-L-phenylalanine-p-nitroanilide. Chymotrypsin hydrolyzes succinyl-L-ala-L-ala-p-nitroanilide, the elastase substrate, to some extent. Peptidases do not appear to be secreted that hydrolyze such model substrates as benzoyl-DL-arginine-p-nitroanilide, the tryptic and cathepsin B substrate, L-leucine-p-nitroanilide, the leucine amino-peptidase substrate, or L-lysine-p-nitroanilide, the aminopeptidase B substrate. Growth of E. coli is generally directly related to the loss of chymotryptic activity in the medium. Hence, autolysis of chymotrypsin, i.e., self-degradation, is an important factor for the availability of degradation products of the enzyme to the bacterium for growth purposes. Accordingly, the degradation of a host protein by autolysis presents an opportunity for E. coli to survive during periods of host nutritional crisis by utilization of the degradation peptides that are produced during autolysis. 相似文献
68.
Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension 总被引:9,自引:1,他引:9 下载免费PDF全文
Wong HL Pinontoan R Hayashi K Tabata R Yaeno T Hasegawa K Kojima C Yoshioka H Iba K Kawasaki T Shimamoto K 《The Plant cell》2007,19(12):4022-4034
Reactive oxygen species (ROS) produced by NADPH oxidase play critical roles in various cellular activities, including plant innate immunity response. In contrast with the large multiprotein NADPH oxidase complex of phagocytes, in plants, only the homologs of the catalytic subunit gp91phox and the cytosolic regulator small GTPase Rac are found. Plant homologs of the gp91phox subunit are known as Rboh (for respiratory burst oxidase homolog). Although numerous Rboh have been isolated in plants, the regulation of enzymatic activity remains unknown. All rboh genes identified to date possess a conserved N-terminal extension that contains two Ca2+ binding EF-hand motifs. Previously, we ascertained that a small GTPase Rac (Os Rac1) enhanced pathogen-associated molecular pattern-induced ROS production and resistance to pathogens in rice (Oryza sativa). In this study, using yeast two-hybrid assay, we found that interaction between Rac GTPases and the N-terminal extension is ubiquitous and that a substantial part of the N-terminal region of Rboh, including the two EF-hand motifs, is required for the interaction. The direct Rac-Rboh interaction was supported by further studies using in vitro pull-down assay, a nuclear magnetic resonance titration experiment, and in vivo fluorescence resonance energy transfer (FRET) microscopy. The FRET analysis also suggests that cytosolic Ca2+ concentration may regulate Rac-Rboh interaction in a dynamic manner. Furthermore, transient coexpression of Os Rac1 and rbohB enhanced ROS production in Nicotiana benthamiana, suggesting that direct Rac-Rboh interaction may activate NADPH oxidase activity in plants. Taken together, the results suggest that cytosolic Ca2+ concentration may modulate NADPH oxidase activity by regulating the interaction between Rac GTPase and Rboh. 相似文献
69.
Chikungunya virus (CHIKV) has resulted in several outbreaks in the past six decades. The clinical symptoms of Chikungunya infection include fever, skin rash, arthralgia, and an increasing incidence of encephalitis. The re-emergence of CHIKV with more severe pathogenesis highlights its potential threat on our human health. In this study, polarized HBMEC, polarized Vero C1008 and non-polarized Vero cells grown on cell culture inserts were infected with CHIKV apically or basolaterally. Plaque assays, viral binding assays and immunofluorescence assays demonstrated apical entry and release of CHIKV in polarized HBMEC and Vero C1008. Drug treatment studies were performed to elucidate both host cell and viral factors involved in the sorting and release of CHIKV at the apical domain of polarized cells. Disruption of host cell myosin II, microtubule and microfilament networks did not disrupt the polarized release of CHIKV. However, treatment with tunicamycin resulted in a bi-directional release of CHIKV, suggesting that N-glycans of CHIKV envelope glycoproteins could serve as apical sorting signals. 相似文献
70.
We have isolated and characterized cellular kinases which associate with the transactivation domain of c-Myc and phosphorylate Ser-62. We demonstrate that cellular Map kinases associate with c-Myc under stringent conditions and phosphorylate Ser-62. We also find that TPA stimulates the activity of the Myc-associated Map kinase to phosphorylate Ser-62. However, we do not observe an increase in Ser-62 phosphorylation in endogenous c-Myc after TPA treatment of cells. Since the regulation of the c-Myc-associated Map kinases does not correlate with the in vivo regulation of Ser-62 phosphorylation in c-Myc, we conclude that Map kinases are not the in vivo kinases for Ser-62. Although Ser-62 phosphorylation was not affected by TPA, phosphorylation at a different serine residue was significantly upregulated by TPA. 相似文献