首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   6篇
  2022年   1篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   7篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   6篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  1999年   2篇
  1998年   2篇
  1985年   1篇
  1982年   1篇
  1978年   2篇
  1977年   1篇
  1969年   1篇
  1960年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
21.
Dendritic cells (DCs) are characterized by their unique capacity for primary T cell activation, providing the opportunity for DC-based cancer vaccination protocols. Novel findings reveal that besides their role as potent inducers of tumor-specific T cells, human DCs display additional antitumor effects. Most of these data were obtained with monocyte-derived DCs, whereas studies investigating native blood DCs are limited. In the present study, we analyze the tumoricidal capacity of M-DC8(+) DCs, which represent a major subpopulation of human blood DCs. We demonstrate that IFN-gamma-stimulated M-DC8(+) DCs lyse different tumor cell lines but not normal cells. In addition, we show that tumor cells markedly enhance the production of TNF-alpha by M-DC8(+) DCs via cell-to-cell contact and that this molecule essentially contributes to the killing activity of M-DC8(+) DCs. Furthermore, we illustrate the ability of M-DC8(+) DCs to promote proliferation, IFN-gamma production, and tumor-directed cytotoxicity of NK cells. The M-DC8(+) DC-mediated enhancement of the tumoricidal potential of NK cells is mainly dependent on cell-to-cell contact. These results reveal that, in addition to their crucial role in activating tumor-specific T cells, blood DCs exhibit direct tumor cell killing and enhance the tumoricidal activity of NK cells. These findings point to the pivotal role of DCs in triggering innate and adaptive immune responses against tumors.  相似文献   
22.
Mutations in the voltage-gated K+ channel Kv1.1 have been linked with a mixed phenotype of episodic ataxia and/or myokymia. Recently, we presented autosomal dominant hypomagnesemia as a new phenotypic characteristic associated with a mutation in Kv1.1 (N255D) (Glaudemans, B., van der Wijst, J., Scola, R. H., Lorenzoni, P. J., Heister, A., van der Kemp, A. W., Knoers, N. V., Hoenderop, J. G., and Bindels, R. J. (2009) J. Clin. Invest. 119, 936–942). A conserved asparagine at position 255 in the third transmembrane segment was converted into an aspartic acid, resulting in a non-functional channel. In this study, we explored the functional consequence of this conserved residue by substitution with other hydrophobic, polar, or charged amino acids (N255E, N255Q, N255A, N255V, N255T, and N255H). Upon overexpression in human embryonic kidney (HEK293) cells, cell surface biotinylation revealed plasma membrane expression of all mutant channels. Next, we used the whole-cell patch clamp technique to demonstrate that the N255E and N255Q mutants were non-functional. Substitution of Asn-255 with other amino acids (N255A, N255V, N255T, and N255H) did not prevent ion conduction, and these mutant channels activated at more negative potentials when compared with wild-type channels, −41.5 ± 1.6, −45.5 ± 2.0, −50.5 ± 1.9, and −33.8 ± 1.3 mV to −29.4 ± 1.1 mV, respectively. The time constant of activation was significantly faster for the two most hydrophobic mutations, N255A (6.2 ± 0.2 ms) and N255V (5.2 ± 0.3 ms), and the hydrophilic mutant N255T (9.8 ± 0.4 ms) in comparison with wild type (13.0 ± 0.9 ms). Furthermore, the voltage dependence of inactivation was shifted ∼13 mV to more negative potentials in all mutant channels except for N255H. Taken together, our data showed that an asparagine at position 255 in Kv1.1 is required for normal voltage dependence and kinetics of channel gating.  相似文献   
23.
Epidermal growth factor (EGF)-like growth factors bind their ErbB receptors in a highly selective manner, but the molecular basis for this specificity is poorly understood. We have previously shown that certain residues in human EGF (Ser(2)-Asp(3)) and TGFalpha (Glu(26)) are not essential for their binding to ErbB1 but prevent binding to ErbB3 and ErbB4. In the present study, we have used a phage display approach to affinity-optimize the C-terminal linear region of EGF-like growth factors for binding to each ErbB receptor and thereby shown that Arg(45) in EGF impairs binding to both ErbB3 and ErbB4. By omitting all these so-called negative constraints from EGF, we designed a ligand designated panerbin that binds ErbB1, ErbB3, and ErbB4 with similarly high affinity as their wild-type ligands. Homology models, based on the known crystal structure of TGFalpha-bound ErbB1, showed that panerbin is able to bind ErbB1, ErbB3, and ErbB4 in a highly similar manner with respect to position and number of interaction sites. Upon in silico introduction of the experimentally known negative constraints into panerbin, we found that Arg(45) induced local charge repulsion and Glu(26) induced steric hindrance in a receptor-specific manner, whereas Ser(2)-Asp(3) impaired binding due to a disordered conformation. Furthermore, radiolabeled panerbin was used to quantify the level of all three receptors on human breast cancer cells in a single radioreceptor assay. It is concluded that the ErbB specificity of EGF-like growth factors primarily results from the presence of a limited number of residues that impair the unintended interaction with other ErbB receptors.  相似文献   
24.
Autosomal dominant non-syndromic hearing loss (AD-NSHL) is one of the most common genetic diseases in human and is well-known for the considerable genetic heterogeneity. In this study, we utilized whole exome sequencing (WES) and linkage analysis for direct genetic diagnosis in AD-NSHL. The Korean family had typical AD-NSHL running over 6 generations. Linkage analysis was performed by using genome-wide single nucleotide polymorphism (SNP) chip and pinpointed a genomic region on 5q31 with a significant linkage signal. Sequential filtering of variants obtained from WES, application of the linkage region, bioinformatic analyses, and Sanger sequencing validation identified a novel missense mutation Arg326Lys (c.977G>A) in the POU homeodomain of the POU4F3 gene as the candidate disease-causing mutation in the family. POU4F3 is a known disease gene causing AD-HSLH (DFNA15) described in 5 unrelated families until now each with a unique mutation. Arg326Lys was the first missense mutation affecting the 3rd alpha helix of the POU homeodomain harboring a bipartite nuclear localization signal sequence. The phenotype findings in our family further supported previously noted intrafamilial and interfamilial variability of DFNA15. This study demonstrated that WES in combination with linkage analysis utilizing bi-allelic SNP markers successfully identified the disease locus and causative mutation in AD-NSHL.  相似文献   
25.
Since 1998, the rapid emergence of multi-azole-resistance (MAR) was observed in Aspergillus fumigatus in the Netherlands. Two dominant mutations were found in the cyp51A gene, a 34 bp tandem repeat (TR) in the promoter region combined with a leucine to histidine substitution at codon 98 (L98H). In this study, we show that molecular dynamics simulations combined with site-directed mutagenesis of amino acid substitutions in the cyp51A gene, correlate to the structure–function relationship of the L98H substitution conferring to MAR in A. fumigatus. Because of a L98H directed change in the flexibility of the loops, that comprise a gate-like structure in the protein, the capacity of the two ligand entry channels is modified by narrowing the diameter and thereby binding of azoles is obstructed. Moreover, the L98H induced relocation of tyrosine 121 and tyrosine 107 seems to be related to the MAR phenotype, without affecting the biological activity of the CYP51A protein. Site-directed mutagenesis showed that both the 34 bp TR and the L98H mutation are required to obtain the MAR phenotype. Furthermore, the amino acid leucine in codon 98 in A. fumigatus is highly conserved and important for maintaining the structure of the CYP51A protein that is essential for azole docking.  相似文献   
26.
27.
Many insects survive seasonal adversities during diapause, a form of programmed developmental and metabolic arrest. Photoperiodically regulated entry into diapause allows multivoltine insect species to optimize the number of generations. The molecular mechanism of the photoperiodic timer is unknown in insects. In the present study, we take advantage of the robust reproductive diapause response in the linden bug Pyrrhocoris apterus and explore the fifth‐instar nymphal stage, which is the most photoperiod‐sensitive stage. The nymphs display daily changes in locomotor activity during short days; this differs from the activity observed during long days. We find evidence of cyclical expression of the circadian clock genes, per and cyc, in nymphal heads; in addition, per expression is also photoperiod‐dependent. The RNA interference‐mediated knockdown of the two circadian clock genes, Clk and cyc, during the nymphal stage results in reproductive arrest in adult females. Furthermore, Clk and cyc knockdown induces the expression of the storage protein hexamerin in the fat body, whereas the expression of vitellogenin diminishes. Taken together, these data support the involvement of circadian clock genes in photoperiodic timer and/or diapause induction.  相似文献   
28.
Mutations of PCDH15, encoding protocadherin 15, can cause either combined hearing and vision impairment (type 1 Usher syndrome; USH1F) or nonsyndromic deafness (DFNB23). Human PCDH15 is reported to be composed of 35 exons and encodes a variety of isoforms with 3–11 ectodomains (ECs), a transmembrane domain and a carboxy-terminal cytoplasmic domain (CD). Building on these observations, we describe an updated gene structure that has four additional exons of PCDH15 and isoforms that can be subdivided into four classes. Human PCDH15 encodes three alternative, evolutionarily conserved unique cytoplasmic domains (CD1, CD2 or CD3). Families ascertained on the basis of prelingual hearing loss were screened for linkage of this phenotype to markers for PCDH15 on chromosome 10q21.1. In seven of twelve families segregating USH1, we identified homozygous mutant alleles (one missense, one splice site, three nonsense and two deletion mutations) of which six are novel. One family was segregating nonsyndromic deafness DFNB23 due to a homozygous missense mutation. To date, in our cohort of 557 Pakistani families, we have found 11 different PCDH15 mutations that account for deafness in 13 families. Molecular modeling provided mechanistic insight into the phenotypic variation in severity of the PCDH15 missense mutations. We did not find pathogenic mutations in five of the twelve USH1 families linked to markers for USH1F, which suggest either the presence of mutations of yet additional undiscovered exons of PCDH15, mutations in the introns or regulatory elements of PCDH15, or an additional locus for type I USH at chromosome 10q21.1. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
29.
Eighteen strains of bacteria were isolated from activated sludge purifying petroleum-refining wastewaters. These strains were plated on solidified mineral medium supplemented with oil fraction in concentration 1000 mg/l. Four of the strains that grew best in the presence of oil were selected for further studies. The strains were identified based on Bonde's scheme and microscopic observations. Three of them belonged to the genus Arthrobacter and one to the genus Micrococcus. Stationary cultures of single strains and their mixtures were set up in mineral medium containing oil (sterile and non-sterile) as sole carbon source in concentration 1000 mg/l. The oils were found to be removed the most efficiently by a mixture of the strains. After 14 days of culture the amount of oil was utilized by from 63 to 95%. In the next stage of the studies the bacteria were used to inoculate activated sludge. Stationary cultures of the activated sludge were set up in mineral medium with oil. The utilisation of petroleum products by non-inoculated activated sludge (control), activated sludge inoculated with a single strain or a mixture of all four strains was examined. In both inoculated activated sludge cultures approximately 80% of the oils were removed, compared to 60% in the control activated sludge. Therefore, inoculated activated sludge showed 20% higher effectiveness of removal of petroleum derivatives.  相似文献   
30.
Adams-Oliver syndrome (AOS) is a rare developmental disorder characterized by the presence of aplasia cutis congenita (ACC) of the scalp vertex and terminal limb-reduction defects. Cardiovascular anomalies are also frequently observed. Mutations in five genes have been identified as a cause for AOS prior to this report. Mutations in EOGT and DOCK6 cause autosomal-recessive AOS, whereas mutations in ARHGAP31, RBPJ, and NOTCH1 lead to autosomal-dominant AOS. Because RBPJ, NOTCH1, and EOGT are involved in NOTCH signaling, we hypothesized that mutations in other genes involved in this pathway might also be implicated in AOS pathogenesis. Using a candidate-gene-based approach, we prioritized DLL4, a critical NOTCH ligand, due to its essential role in vascular development in the context of cardiovascular features in AOS-affected individuals. Targeted resequencing of the DLL4 gene with a custom enrichment panel in 89 independent families resulted in the identification of seven mutations. A defect in DLL4 was also detected in two families via whole-exome or genome sequencing. In total, nine heterozygous mutations in DLL4 were identified, including two nonsense and seven missense variants, the latter encompassing four mutations that replace or create cysteine residues, which are most likely critical for maintaining structural integrity of the protein. Affected individuals with DLL4 mutations present with variable clinical expression with no emerging genotype-phenotype correlations. Our findings demonstrate that DLL4 mutations are an additional cause of autosomal-dominant AOS or isolated ACC and provide further evidence for a key role of NOTCH signaling in the etiology of this disorder.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号