首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607篇
  免费   45篇
  2024年   2篇
  2023年   2篇
  2022年   13篇
  2021年   26篇
  2020年   8篇
  2019年   7篇
  2018年   11篇
  2017年   6篇
  2016年   21篇
  2015年   28篇
  2014年   26篇
  2013年   41篇
  2012年   43篇
  2011年   51篇
  2010年   25篇
  2009年   16篇
  2008年   33篇
  2007年   35篇
  2006年   18篇
  2005年   36篇
  2004年   24篇
  2003年   16篇
  2002年   19篇
  2001年   11篇
  2000年   12篇
  1999年   13篇
  1998年   8篇
  1997年   3篇
  1996年   6篇
  1995年   5篇
  1994年   6篇
  1993年   4篇
  1992年   9篇
  1991年   2篇
  1990年   6篇
  1989年   15篇
  1988年   3篇
  1987年   6篇
  1986年   3篇
  1985年   3篇
  1981年   4篇
  1979年   3篇
  1977年   2篇
  1976年   4篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1967年   3篇
  1965年   1篇
排序方式: 共有652条查询结果,搜索用时 15 毫秒
41.
The esterase genes est2 from Alicyclobacillus acidocaldarius and AF1716 from Archaeoglobus fulgidus were subjected to error-prone PCR in an effort to increase the low enantioselectivity of the corresponding enzymes EST2 and AFEST, respectively. The model substrate ( RS)- p-nitrophenyl-2-chloropropionate was chosen to produce ( S)-2-chloropropionic acid, an important intermediate in the synthesis of some optically pure compounds, such as the herbicide mecoprop. In the case of EST2, a single mutant, Leu212Pro, was obtained showing a slightly enhanced preference toward the ( S) substrate; in the case of AFEST, a double mutant, Leu101Ile/Asp117Gly, was obtained showing an increased preference in the opposite direction. The 3-D structures of the EST2 and AFEST enzymes were analyzed by molecular modeling to determine the effects of the mutations. Mutations were positioned differently in the structures, but in both cases caused small modifications around the active site and in the oxyanion loop.  相似文献   
42.
In the present study we investigated the response to iron (Fe) deficiency in two cultivars of Festuca rubra L. (Rubina and Barnica) used in correction of chlorosis of fruit trees cultivated on calcareous soils. We found that a Fe-chelating compound, identified as 2-deoxymugineic acid (DMA), was secreted from the roots in response to Fe-deficiency in both cultivars. The amount of DMA secreted into solution increased with the development of Fe-deficiency. The secretion showed a distinct diurnal rhythm characterized by a secretion peak at between 2 and 5 hours after sunrise at 20°C. However, this secretion peak was delayed by 3 hour at low temperature (<10°C) and occurred 3 h earlier at high temperature (30°C). When water used for the collection of root exudates was pre-warmed (25°C) or pre-cooled (10°C), this led to an earlier or a delayed secretion compared to control (15°C) under the same air temperature, respectively. Short-term shading treatment did not affect the secretion pattern of DMA. These results demonstrate that the secretion time of DMA from the roots is, at least partly controlled by the temperature in the root environment. Overall, these findings suggest that the ability of Festuca rubra to prevent Fe chlorosis symptoms (`re-greening effect') of associated fruit trees is partially related to the secretion of DMA which increase Fe availability in calcareous soils.  相似文献   
43.
The Hansenula polymorpha (strain CBS4732) genome sequencing and analysis   总被引:4,自引:0,他引:4  
The methylotrophic yeast Hansenula polymorpha is a recognised model system for investigation of peroxisomal function, special metabolic pathways like methanol metabolism, of nitrate assimilation or thermostability. Strain RB11, an odc1 derivative of the particular H. polymorpha isolate CBS4732 (synonymous to ATCC34438, NRRL-Y-5445, CCY38-22-2) has been developed as a platform for heterologous gene expression. The scientific and industrial significance of this organism is now being met by the characterisation of its entire genome. The H. polymorpha RB11 genome consists of approximately 9.5 Mb and is organised as six chromosomes ranging in size from 0.9 to 2.2 Mb. Over 90% of the genome was sequenced with concomitant high accuracy and assembled into 48 contigs organised on eight scaffolds (supercontigs). After manual annotation 4767 out of 5933 open reading frames (ORFs) with significant homologies to a non-redundant protein database were predicted. The remaining 1166 ORFs showed no significant similarity to known proteins. The number of ORFs is comparable to that of other sequenced budding yeasts of similar genome size.  相似文献   
44.
Advanced glycation end-product (AGE)-damaged IgG occurs as a result of hyperglycemia and/or oxidative stress. Autoantibodies to IgG-AGE were previously demonstrated in patients with severe, longstanding rheumatoid arthritis (RA). We investigated whether IgG-AGE and anti-IgG-AGE antibodies were present early in the course of RA and other inflammatory arthropathies. We prospectively followed a cohort of 238 patients with inflammatory arthritis of duration less than 1 year. Patients were evaluated clinically and serologically, and radiographs were obtained at initial and 1-year visits. Sera were assayed for IgG-AGE and anti-IgG-AGE antibodies by enzyme-linked immunosorbent assay (ELISA). Rheumatoid factor (RF) was determined by nephelometry and ELISA. Of all patients, 29% had RF-positive RA, 15% had RF-negative RA, 18% had spondyloarthropathy, and 38% had undifferentiated arthritis. IgG-AGE was present in 19% of patients, and was similar in amount and frequency in all groups. Patients with elevated IgG-AGE levels had significantly higher levels of the inflammatory markers C-reactive protein and erythrocyte sedimentation rate, but there was no correlation with blood glucose levels. Overall, 27% of the patients had IgM anti-IgG-AGE antibodies. These antibodies were highly significantly associated with RFs (P < 0.0001) and with swollen joint count (P < 0.01). In early onset arthritis, IgG damaged by AGE was detected in all patient groups. The ability to make IgM anti-IgG-AGE antibodies, however, was restricted to a subset of RF-positive RA patients with more active disease. The persistence of the anti-IgG-AGE response was more specific to RA, and was transient in the patients with spondyloarthropathy and with undifferentiated arthritis who were initially found to be positive for anti-IgG-AGE antibodies.  相似文献   
45.
Fungi belonging to the genus Coelomomyces can infect mosquito larvae and develop within the larval hemocoel. To examine fungal development, Aedesaegypti larvae infected with Coelomomyces stegomyiae Keilin were fixed, embedded and sectioned for both light and electron microscopy. While fungal hyphae of C. stegomyiae did not invade cells other than the cuticular epithelial cells, they did penetrate a number of tissues including muscles, midgut, hemopoietic organ, imaginal discs, and Malpighian tubules. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
46.
We used the chloride fluorescent probe, 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ), to study chloride fluxes in human erythrocytes. The SPQ load was made by hypotonic buffer (150 mOsm, 10 min). Intracellular fluorescence was monitored continuously at 360 nm excitation and 410 nm emission wavelengths. The leakage of SPQ out of cells was <5% h(-1) and the Stern-Volmer constant for quenching of intracellular SPQ by Cl was 0.023 mM(-1). The time course of intracellular [Cl] was measured and the influence of PTH, forskolin, and phorbol 12-myristate 13-acetate (PMA) on erythrocyte Cl transport was examined. The results establish a direct method to measure intracellular [Cl] continuously in erythrocytes and show that PTH induces a Cl efflux inhibited by 4, 4'-diisothiocyanatostilbene-2,2'-disulfonate. This effect was similar to those induced by forskolin, which stimulates cAMP generation, and by PMA, which stimulates protein kinase C.  相似文献   
47.
48.
Complex phosphorylation-dependent signaling networks underlie the coordination of cellular growth and division. In the fission yeast Schizosaccharomyces pombe, the Dual specificity tyrosine-(Y)-phosphorylation regulated kinase (DYRK) family protein kinase Pom1 regulates cell cycle progression through the mitotic inducer Cdr2 and controls cell polarity through unknown targets. Here, we sought to determine the phosphorylation targets of Pom1 kinase activity by SILAC-based phosphoproteomics. We defined a set of high-confidence Pom1 targets that were enriched for cytoskeletal and cell growth functions. Cdr2 was the only cell cycle target of Pom1 kinase activity that we identified in cells. Mutation of Pom1-dependent phosphorylation sites in the C terminus of Cdr2 inhibited mitotic entry but did not impair Cdr2 localization. In addition, we found that Pom1 phosphorylated multiple substrates that function in polarized cell growth, including Tea4, Mod5, Pal1, the Rho GAP Rga7, and the Arf GEF Syt22. Purified Pom1 phosphorylated these cell polarity targets in vitro, confirming that they are direct substrates of Pom1 kinase activity and likely contribute to regulation of polarized growth by Pom1. Our study demonstrates that Pom1 acts in a linear pathway to control cell cycle progression while regulating a complex network of cell growth targets.The coordination of cell growth and division represents a fundamental concept in cell biology. The mechanisms that promote polarized growth and drive cell cycle progression are complex signaling networks that operate in a wide range of cell types and organisms. Understanding these networks and their molecular connections requires large-scale approaches that define the underlying biochemical reactions. Phosphorylation drives many events in both cell polarity and cell cycle signaling, and protein kinases that act in both processes represent key players in coordinated growth and division.The fission yeast S. pombe has served as a long-standing model organism for studies on cell polarity and the cell cycle. The fission yeast protein kinase Pom1 is an intriguing candidate to function in the coordination of polarized growth and cell cycle progression. This DYRK1 family kinase was originally identified as a polarity mutant (hence the name Pom1) in a genetic screen for misshapen cells (1). Later studies revealed an additional role for Pom1 in cell cycle progression, where it delays mitotic entry until cells reach a critical size threshold (2, 3). Thus, pom1Δ mutant cells display defects in both cell polarity and cell size at mitosis, as well as misplaced division septa (16). Mutations that impair Pom1 kinase activity mimic these deletion phenotypes, indicating a key role for Pom1-dependent phosphorylation. The pleiotropic phenotype of pom1 mutants might result from Pom1 phosphorylating distinct substrates for cell polarity versus mitotic entry, but the targets of Pom1 kinase activity are largely unknown. Only two Pom1 substrates have been identified to date. First, Pom1 auto-phosphorylates as part of a mechanism that promotes localization in a cortical gradient enriched at cell tips (7). Second, Pom1 phosphorylates two regions of the protein kinase Cdr2. Phosphorylation of Cdr2 C terminus is proposed to prevent mitotic entry by inhibiting Cdr2 kinase activity (8, 9), while phosphorylation near membrane-binding motifs of Cdr2 promotes medial cell division by inhibiting localization of Cdr2 at cell tips (10). It has been unclear if Cdr2 represents the only cell cycle target of Pom1 kinase activity, and no cell polarity targets of Pom1 have been identified. In order to clarify how this protein kinase controls multiple cellular processes, we have comprehensively cataloged Pom1 substrates by quantitative phosphoproteomics. Such a large-scale approach also has the potential to reveal general mechanisms that operate in the coordination of cell growth and division.Stable isotope labeling of amino acids in culture (SILAC) combined with phosphopeptide enrichment and mass spectrometry has allowed the proteome-wide analysis of protein phosphorylation from diverse experimental systems (1115). In this approach, cells are grown separately in media containing normal (“light”) or isotope-labeled (“heavy”) arginine and lysine, treated, mixed, and processed for LC-MS/MS analysis. In combination with analog-sensitive protein kinase mutants, which can be rapidly and specifically inhibited by nonhydrolyzable ATP analogs (16, 17), SILAC presents a powerful approach to identify cellular phosphorylation events that depend on a specific protein kinase. This method is particularly well suited for studies in yeast, where analog-sensitive protein kinase mutants can be readily integrated into the genome.In this study, we have employed SILAC-based phosphoproteomics to identify Pom1 substrates in fission yeast. New Pom1 targets were verified as direct substrates in vitro, and our analysis indicates that Pom1 controls cell cycle progression through a single target while coordinating a more complex network of cell polarity targets.  相似文献   
49.
The RNA binding protein Larp1 was originally shown to be involved in spermatogenesis, embryogenesis and cell-cycle progression in Drosophila. Our data show that mammalian Larp1 is found in a complex with poly A binding protein and eukaryote initiation factor 4E and is associated with 60S and 80S ribosomal subunits. A reduction in Larp1 expression by siRNA inhibits global protein synthesis rates and results in mitotic arrest and delayed cell migration. Consistent with these data we show that Larp1 protein is present at the leading edge of migrating cells and interacts directly with cytoskeletal components. Taken together, these data suggest a role for Larp1 in facilitating the synthesis of proteins required for cellular remodelling and migration.  相似文献   
50.
Oxidative stress has been postulated as one of the mechanisms underlying the estrogen carcinogenic effect in breast cancer. Estrogens are known to increase mitochondrial-derived reactive oxygen species (ROS) by an unknown mechanism. Given that uncoupling proteins (UCPs) are key regulators of mitochondrial energy efficiency and ROS production, our aim was to check the presence and activity of UCPs in estrogen receptor (ER)-positive and ER-negative breast cancer cells and tumors, as well as their relation to oxidative stress. Estrogen (1 nM) induced higher oxidative stress in the ER-positive MCF-7 cell line, showing increased mitochondrial membrane potential, H2O2 levels, and DNA and protein damage compared to ER-negative MDA-MB-231 cells. All isoforms of uncoupling proteins were highly expressed in ER-positive breast cancer cells and tumors compared to negative ones. ROS production in mitochondria isolated from MCF-7 was increased by inhibition of UCPs with GDP, but not in mitochondria from MDA-MB-231. Estrogen treatment decreased uncoupling protein and catalase levels in MCF-7 and decreased GDP-dependent ROS production in isolated mitochondria. On the whole, these results suggest that estrogens, through an ER-dependent mechanism, may increase mitochondrial ROS production by repressing uncoupling proteins, which offers a new perspective on the understanding of why estrogens are a risk factor for breast cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号