首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94053篇
  免费   6879篇
  国内免费   6579篇
  107511篇
  2024年   208篇
  2023年   1296篇
  2022年   3014篇
  2021年   4943篇
  2020年   3262篇
  2019年   4097篇
  2018年   4028篇
  2017年   2927篇
  2016年   4141篇
  2015年   5922篇
  2014年   6987篇
  2013年   7352篇
  2012年   8637篇
  2011年   7883篇
  2010年   4570篇
  2009年   4264篇
  2008年   4860篇
  2007年   4212篇
  2006年   3587篇
  2005年   2854篇
  2004年   2363篇
  2003年   2135篇
  2002年   1725篇
  2001年   1490篇
  2000年   1374篇
  1999年   1428篇
  1998年   835篇
  1997年   902篇
  1996年   823篇
  1995年   794篇
  1994年   685篇
  1993年   577篇
  1992年   692篇
  1991年   542篇
  1990年   464篇
  1989年   342篇
  1988年   281篇
  1987年   226篇
  1986年   190篇
  1985年   214篇
  1984年   129篇
  1983年   122篇
  1982年   54篇
  1981年   26篇
  1980年   22篇
  1979年   19篇
  1973年   2篇
  1972年   2篇
  1970年   3篇
  1969年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
BackgroundTo explore the associations of serum high-sensitivity C-reactive protein (hs-CRP) and prealbumin (PAB) with the number of diseased coronary vessels, degree of stenosis and heart failure in patients with myocardial infarction (MI).MethodsA total of 39 MI patients treated in the Cardiology were selected as the observation group, and another 41 patients with normal results of coronary angiography during the same period were selected as the control group. The general data of patients were recorded in detail, the content of serum hs-CRP and PAB in the peripheral blood was detected, and the number of diseased coronary vessels and the degree of stenosis were detected via coronary angiography.ResultsCompared with those in control group, the blood pressure and heart rate significantly rose, the content of indexes related to the severity of MI were significantly increased, the content of hs-CRP was significantly increased, and the content of PAB was significantly decreased in observation group. Hs-CRP was positively correlated with the number of diseased coronary vessels, degree of stenosis and heart failure in patients, but PAB was negatively correlated with the above factors. The survival rate of MI patients with high content of hs-CRP was obviously lower than that of patients with low content of hsCRPConclusionsSerum hs-CRP and PAB are closely associated with the number of diseased coronary vessels, degree of stenosis and heart failure in MI patients.  相似文献   
902.
903.
904.
905.
Radiation‐induced intestinal injury (RIII) is a common complication after radiation therapy in patients with pelvic, abdominal, or retroperitoneal tumours. Recently, in the model of DSS (Dextran Sulfate Sodium Salt) ‐induced intestinal inflammatory injury, it has been found in the study that transgenic mice expressing hVDR in IEC (Intestinal Epithelial Cell) manifest highly anti‐injury properties in colitis, suggesting that activated VDR in the epithelial cells of intestine may inhibit colitis by protecting the mucosal epithelial barrier. In this study, we investigated the effect of the expression and regulation of VDR on the protection of RIII, and the radiosensitivity in vitro experiments, and explored the initial mechanism of VDR in regulating radiosensitivity of IEC. As a result, we found that the expression of VDR in intestinal tissues and cells in mice can be induced by ionizing radiation. VDR agonists are able to prolong the average survival time of mice after radiation and reduce the radiation‐induced intestinal injury. For lack of vitamin D, the radiosensitivity of intestinal epithelial cells in mice increased, which can be reduced by VDR activation. Ensuing VDR activation, the radiation‐induced intestinal stem cells damage is decreased, and the regeneration and differentiation of intestinal stem cells is promoted as well. Finally, on the basis of sequencing analysis, we validated and found that VDR may target the HIF/PDK1 pathway to mitigate RIII. We concluded that agonism or upregulation of VDR expression attenuates radiation‐induced intestinal damage in mice and promotes the repair of epithelial damage in intestinal stem cells.  相似文献   
906.
Pain is a common clinical symptom that seriously affects the quality of life in a variety of patient populations. In recent years, research on the role of adenosine signaling in pain modulation has made great progress. Adenosine is a purine nucleoside and a neuromodulator, and regulates multiple physiological and pathophysiological functions through the activation of four G protein–coupled receptors, which are classified as A1, A2A, A2B, and A3 adenosine receptors (ARs). Adenosine and its receptors that are widespread in the central nervous system (CNS) play an important role in the processing of nociceptive sensory signals in different pain models. A1Rs have the highest affinity to adenosine, and the role in analgesia has been well investigated. The roles of A2ARs and A2BRs in the modulation of pain are controversial because they have both analgesic and pronociceptive effects. The analgesic effects of A3Rs are primarily manifested in neuropathic pain. In this article, we have reviewed the recent studies on ARs in the modulation of neuropathic pain, inflammatory pain, postoperative pain, and visceral pain in the CNS. Furthermore, we have outlined the pathways through which ARs contribute to pain regulation, thereby shedding light on how this mechanism can be targeted to provide effective pain relief.  相似文献   
907.
Migration from rhizosphere to rhizoplane is a key selecting process in root microbiome assembly, but not fully understood. Rhizobiales members are overrepresented in the core root microbiome of terrestrial plants, and here we report a genome-wide transposon-sequencing of rhizoplane fitness genes of beneficial Sinorhizobium fredii on wild soybean, cultivated soybean, rice, and maize. There were few genes involved in broad-host-range rhizoplane colonization. The fadL mutant lacking a fatty acid transporter exhibited high colonization rates, while mutations in exoFQP (encoding membrane proteins directing exopolysaccharide polymerization and secretion), but not those in exo genes essential for exopolysaccharide biosynthesis, led to severely impaired colonization rates. This variation was not explainable by their rhizosphere and rhizoplane survivability, and associated biofilm and exopolysaccharide production, but consistent with their migration ability toward rhizoplane, and associated surface motility and the mixture of quorum-sensing AHLs (N-acylated-L-homoserine lactones). Genetics and physiology evidences suggested that FadL mediated long-chain AHL uptake while ExoF mediated the secretion of short-chain AHLs which negatively affected long-chain AHL biosynthesis. The fadL and exoF mutants had elevated and depleted extracellular long-chain AHLs, respectively. A synthetic mixture of long-chain AHLs mimicking that of the fadL mutant can improve rhizobial surface motility. When this AHL mixture was spotted into rhizosphere, the migration toward roots and rhizoplane colonization of S. fredii were enhanced in a diffusible way. This work adds novel parts managing extracellular AHLs, which modulate bacterial migration toward rhizoplane. The FadL-ExoFQP system is conserved in Alphaproteobacteria and may shape the “home life” of diverse keystone rhizobacteria.Subject terms: Microbial ecology, Functional genomics, Bacterial genetics  相似文献   
908.
909.
Flotillin‐1(FLOT1) has long been recognized as a tumour‐promoting gene in several types of cancer. However, the expression and function of FLOT1 in glioblastomas (GBM) has not been elucidated. Here, in this study, we find that the expression level of FLOT1 in GBM tissue was much higher than that in normal brain, and the expression was even higher in the more aggressive subtypes and IDH status of glioma. Kaplan–Meier survival revealed that high FLOT1 expression is closely associated with poor outcome in GBM patients. FLOT1 knockdown markedly reduced the proliferation, migration and invasiveness of GBM cells, while FLOT1 overexpression significantly increases GBM cell proliferation, migration and invasiveness. Mechanistically, FLOT1 expression may play a potential role in the microenvironment of GBM. Therefore, FLOT1 promotes GBM proliferation and invasion in vitro and in vivo and may serve as a biomarker of prognosis and therapeutic potential in the fight against GBM.  相似文献   
910.
The operation of modern wastewater treatment plants (WWTPs) is driven by activated sludge microbiota, a complex assemblage of trophically interacting microorganisms. Microbial predation is crucial to fundamental understanding of how biological interactions drive microbiome structuring and functioning of WWTPs. However, predatory bacteria have received little attention regarding their diversity, activity, and ecological function in activated sludge, limiting the exploitation of food web interactions for wastewater microbiome engineering. Here, by using rRNA-stable isotope probing of activated sludge microbiota with 13C-labeled prey bacteria, we uncovered diverse as-yet-uncultivated putative predatory bacteria that actively incorporated 13C-biomass. Myxobacteria, especially Haliangium and the mle1-27 clade, were found as the dominant active predators, refreshing conventional views based on a few predatory isolates of Bdellovibrionota from WWTPs. The identified predatory bacteria showed more selective predation on prey compared with the protists dominated by ciliates, providing in situ evidence for inter-domain predation behavior divergence in activated sludge. Putative predatory bacteria were tracked over a two-year microbiome monitoring effort at a local WWTP, revealing the predominance of Myxococcota (6.5 ± 1.3%) over Bdellovibrionota (1.0 ± 0.2%) lineages. Phylogenetic analysis unveiled highly diverse myxobacteria inhabiting activated sludge and suggested a habitat filtering effect in global WWTPs. Further mining of a global activated sludge microbiome dataset revealed the prevalence of Myxococcota (5.4 ± 0.1%) species and potential impacts of myxobacterial predation on process performance. Collectively, our findings provided unique insights into the predating activity, diversity, and prevalence of Myxococcota species in activated sludge, highlighting their links with wastewater treatment processes via trophic regulation of enteric and functional bacteria.Subject terms: Microbial ecology, Biodiversity, Environmental microbiology, Microbial ecology, Environmental sciences  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号