首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1570篇
  免费   139篇
  2023年   8篇
  2022年   12篇
  2021年   34篇
  2020年   21篇
  2019年   19篇
  2018年   34篇
  2017年   26篇
  2016年   23篇
  2015年   52篇
  2014年   72篇
  2013年   82篇
  2012年   103篇
  2011年   85篇
  2010年   54篇
  2009年   46篇
  2008年   89篇
  2007年   81篇
  2006年   63篇
  2005年   88篇
  2004年   54篇
  2003年   73篇
  2002年   60篇
  2001年   42篇
  2000年   43篇
  1999年   37篇
  1998年   17篇
  1997年   18篇
  1996年   20篇
  1995年   15篇
  1994年   12篇
  1993年   23篇
  1992年   25篇
  1991年   24篇
  1990年   23篇
  1989年   24篇
  1988年   25篇
  1987年   13篇
  1986年   18篇
  1985年   26篇
  1984年   16篇
  1983年   15篇
  1982年   8篇
  1981年   7篇
  1980年   10篇
  1979年   16篇
  1978年   6篇
  1977年   6篇
  1976年   5篇
  1975年   7篇
  1966年   4篇
排序方式: 共有1709条查询结果,搜索用时 15 毫秒
211.
Global warming alerts and threats are on the rise due to the utilization of fossil fuels. Alternative fuel sources like bio-ethanol and biodiesel are being produced to combat against these threats. Bio-ethanol can be produced from a range of substrate. The present study is aimed at the Production of bioethanol from pretreated agricultural substrate using enzymatic hydrolysis and simultaneous saccharification with the addition of purified fungal enzyme. Most cellulosic biomass is not fermentable without appropriate pretreatment methods and so dilute sulfuric acid pretreatment was applied to make the cellulose contained in the waste susceptible to endoglucanase enzyme. A range of acid pretreatment of wheat bran was made in which the sample that was pretreated with 1% dilute sulfuric acid gave maximum yield of ethanol in both methods such as 5.83 g L−1 and 5.27 g L−1, respectively. Ethanol produced from renewable and cheap agricultural products (wheat bran) provides reduction in green house gas emission, carbon monoxide, sulfur, and helps to eliminate smog from the environment.  相似文献   
212.
Protein glycosylation (e.g., N-linked glycosylation) is known to play an essential role in both cellular functions and secretory pathways; however, our knowledge of in vivo N-glycosylated sites is very limited for the majority of fungal organisms including Aspergillus niger. Herein, we present the first extensive mapping of N-glycosylated sites in A. niger by applying an optimized solid phase glycopeptide enrichment protocol using hydrazide-modified magnetic beads. The enrichment protocol was initially optimized using both mouse blood plasma and A. niger secretome samples, and it was demonstrated that the protein-level enrichment protocol offered superior performance over the peptide-level protocol. The optimized protocol was then applied to profile N-glycosylated sites from both the secretome and whole cell lysates of A. niger. A total of 847 N-glycosylated sites from 330 N-glycoproteins (156 proteins from the secretome and 279 proteins from whole cells) were confidently identified by LC-MS/MS. The identified N-glycoproteins in the whole cell lysate were primarily localized in the plasma membrane, endoplasmic reticulum, Golgi apparatus, lysosome, and storage vacuoles, supporting the important role of N-glycosylation in the secretory pathways. In addition, these glycoproteins are involved in many biological processes including gene regulation, signal transduction, protein folding and assembly, protein modification, and carbohydrate metabolism. The extensive coverage of N-glycosylated sites and the observation of partial glycan occupancy on specific sites in a number of enzymes provide important initial information for functional studies of N-linked glycosylation and their biotechnological applications in A. niger.  相似文献   
213.
Xylooligosaccharides are functional foods mainly produced during the hydrolysis of xylan by physical, chemical, or enzymatic methods. In this study, production of xylobiose was investigated using oil palm empty fruit bunch fiber (OPEFB) as a source material, by chemical and enzymatic methods. Xylanase-specific xylan hydrolysis followed by xylobiose production was observed. Among different xylanases, xylanase from FXY-1 released maximum xylobiose from pretreated OPEFB fiber, and this fungal strain was identified as Aspergillus terreus and subsequently deposited under the accession Number MTCC- 8661. The imperative role of lignin on xylooligosaccharides enzymatic synthesis was exemplified with the notice of xylobiose production only with delignified material. A maximum 262 mg of xylobiose was produced from 1.0 g of pretreated OPEFB fiber using FXY-1 xylanase (6,200 U/ml) at pH 6.0 and 45° C. At optimized environment, the yield of xylobiose was improved to 78.67 g/100 g (based on xylan in the pretreated OPEFB fiber).  相似文献   
214.
Most mammalian bioactive peptides possess a C-terminal amino acid amide moiety. The presence of the C-terminal amide is a significant impediment to the recombinant production of α-amidated peptides. α-Amidated peptides are produced in vivo by the enzymatic cleavage of a precursor with a C-terminal glycine residue. Peptidylglycine α-hydroxylating monooxygenase catalyzes the key step in the oxidation of the glycine-extended precursors to the α-amidated peptide. Herein, we detail the production of the catalytic core of human peptidylglycine α-hydroxylating monooxygenase (hPHMcc) in Escherichia coli possessing a N-terminal fusion to thioredoxin (Trx). Trx was fused to hPHMcc to enhance the yield of the resulting 52 kDa protein as a soluble and catalytically active enzyme. The Trx-hPHMcc-His(6) fusion was purified to homogeneity and exhibited steady-state kinetic parameters that were similar to purified rat PHMcc. The bacterial production of recombinant hPHMcc will foster efforts to generate α-amidated peptides by the co-expression of hPHMcc and the α-amidated peptide precursors in E. coli or the in vitro amidation of recombinantly expressed α-amidated peptide precursors.  相似文献   
215.
DNA polymerase epsilon (Pol ε) synthesizes the leading strands, following the CMG (Cdc45, Mcm2-7, and GINS [Go-Ichi-Nii-San]) helicase that translocates on the leading-strand template at eukaryotic replication forks. Although Pol ε is essential for the viability of fission and budding yeasts, the N-terminal polymerase domain of the catalytic subunit, Cdc20/Pol2, is dispensable for viability, leaving the following question: what is the essential role(s) of Pol ε? In this study, we investigated the essential roles of Pol ε using a temperature-sensitive mutant and a recently developed protein-depletion (off-aid) system in fission yeast. In cdc20-ct1 cells carrying mutations in the C-terminal domain of Cdc20, the CMG components, RPA, Pol α, and Pol δ were loaded onto replication origins, but Cdc45 did not translocate from the origins, suggesting that Pol ε is required for CMG helicase progression. In contrast, depletion of Cdc20 abolished the loading of GINS and Cdc45 onto origins, indicating that Pol ε is essential for assembly of the CMG complex. These results demonstrate that Pol ε plays essential roles in both the assembly and progression of CMG helicase.  相似文献   
216.
The Ska complex is an essential mitotic component required for accurate cell division in human cells. It is composed of three subunits that function together to establish stable kinetochore-microtubule interactions in concert with the Ndc80 network. We show that the structure of the Ska core complex is a W-shaped dimer of coiled coils, formed by intertwined interactions between Ska1, Ska2, and Ska3. The C-terminal domains of Ska1 and Ska3 protrude at each end of the homodimer, bind microtubules in vitro when connected to the central core, and are essential in vivo. Mutations disrupting the central coiled coil or the dimerization interface result in chromosome congression failure followed by cell death. The Ska complex is thus endowed with bipartite and cooperative tubulin-binding properties at the ends of a 350 ?-long molecule. We discuss how this symmetric architecture might complement and stabilize the Ndc80-microtubule attachments with analogies to the yeast Dam1/DASH complex.  相似文献   
217.
The Amazon harbours one of the richest ecosystems on Earth. Such diversity is likely to be promoted by plant specialization, associated with the occurrence of a mosaic of landscape units. Here, we integrate ecological and phylogenetic data at different spatial scales to assess the importance of habitat specialization in driving compositional and phylogenetic variation across the Amazonian forest. To do so, we evaluated patterns of floristic dissimilarity and phylogenetic turnover, habitat association and phylogenetic structure in three different landscape units occurring in terra firme (Hilly and Terrace) and flooded forests (Igapó). We established two 1-ha tree plots in each of these landscape units at the Caparú Biological Station, SW Colombia, and measured edaphic, topographic and light variables. At large spatial scales, terra firme forests exhibited higher levels of species diversity and phylodiversity than flooded forests. These two types of forests showed conspicuous differences in species and phylogenetic composition, suggesting that environmental sorting due to flood is important, and can go beyond the species level. At a local level, landscape units showed floristic divergence, driven both by geographical distance and by edaphic specialization. In terms of phylogenetic structure, Igapó forests showed phylogenetic clustering, whereas Hilly and Terrace forests showed phylogenetic evenness. Within plots, however, local communities did not show any particular trend. Overall, our findings suggest that flooded forests, characterized by stressful environments, impose limits to species occurrence, whereas terra firme forests, more environmentally heterogeneous, are likely to provide a wider range of ecological conditions and therefore to bear higher diversity. Thus, Amazonia should be considered as a mosaic of landscape units, where the strength of habitat association depends upon their environmental properties.  相似文献   
218.
The region of Kodagu, South India, comprises a fragmented landscape with a high density of remnant forest patches dispersed within a mosaic dominated by shaded coffee agro-forests. We evaluated the role of self, wind and insect pollination to Coffea canephora production in this landscape. The giant Asian honeybee, Apis dorsata, which nests in remnant forests, was the main pollinator of coffee (accounting for 58% of the floral visitors). The proportion of flowers that developed into fruits was highest when hand cross-pollinated (44%), followed by open- (insect and wind combined; 33%) and wind- (22.1%) pollination treatments. Pollination by bees therefore increases fruit production by 50% over that achieved by wind. Self-pollination (1.7%) and no pollination (1%) treatments produced very low fruit set, emphasizing the importance of cross-pollination in C. canephora. Unlike measures of pollination success, initial fruit set (five weeks after flowering) proved an unreliable proxy for final fruit set. Size of adjoining forest fragments (mostly 0.3–20 ha, with a few exceeding 200 ha) positively influenced pollinator visitation to coffee flowers, but distance to such fragments had no influence on pollination. This study demonstrates the importance of cross-pollination for crop production in C. canephora, the important contribution that pollinating insects make to coffee production, and the benefits of relatively large forest fragments within the landscape mosaic to support insect pollinators of coffee. A comparison of pollinator composition to that of 100 years ago indicated that coffee pollination services remained intact despite changes in pollinator community composition.  相似文献   
219.
Cell line models have been widely used to investigate glioblastoma multiforme (GBM) pathobiology and in the development of targeted therapies. However, GBM tumours are molecularly heterogeneous and how cell lines can best model that diversity is unknown. In this report, we investigated gene expression profiles of three preclinical growth models of glioma cell lines, in vitro and in vivo as subcutaneous and intracerebral xenografts to examine which cell line model most resembles the clinical samples. Whole genome DNA microarrays were used to profile gene expression in a collection of 25 high-grade glioblastomas, and comparisons were made to profiles of cell lines under three different growth models. Hierarchical clustering revealed three molecular subtypes of the glioblastoma patient samples. Supervised learning algorithm, trained on glioma subtypes predicted the intracerebral cell line model with one glioma subtype (r = 0.68; 95% bootstrap CI -0.41, 0.46). Survival analysis of enriched gene sets (P < 0.05) revealed 19 biological categories (146 genes) belonging to neuronal, signal transduction, apoptosis- and glutamate-mediated neurotransmitter activation signals that are associated with poor prognosis in this glioma subclass. We validated the expression profiles of these gene categories in an independent cohort of patients from 'The Cancer Genome Atlas' project (r = 0.62, 95% bootstrap CI: -0.42, 0.43). We then used these data to select and inhibit a novel target (glutamate receptor) and showed that LY341595, a glutamate receptor specific antagonist, could prolong survival in intracerebral tumour-implanted mice in combination with irradiation, providing an in vivo cell line system of preclinical studies.  相似文献   
220.

Objective

To determine the relationship between high vaginal pro-inflammatory cytokines and cervical shortening in women at high risk of spontaneous preterm labor and to assess the influence of cervical cerclage and vaginal progesterone on this relationship.

Methods

This prospective longitudinal observational study assessed 112 women with at least one previous preterm delivery between 16 and 34 weeks’ gestation. Transvaginal cervical length was measured and cervico-vaginal fluid sampled every two weeks until 28 weeks. If the cervix shortened (<25 mm) before 24 weeks’ gestation, women (cases) were randomly assigned to cerclage or progesterone and sampled weekly. Cytokine concentrations were measured in a subset of cervico-vaginal fluid samples (n = 477 from 78 women) by 11-plex fluid-phase immunoassay.

Results

All 11 inflammatory cytokines investigated were detected in cervico-vaginal fluid from women at high risk of preterm birth, irrespective of later cervical shortening. At less than 24 weeks’ gestation and prior to intervention, women destined to develop a short cervix (n = 36) exhibited higher cervico-vaginal concentrations than controls (n = 42) of granulocyte-macrophage colony-stimulating factor [(GM-CSF) 16.2 fold increase, confidence interval (CI) 1.8–147; p = 0.01] and monocyte chemotactic protein-1 [(MCP-1) 4.8, CI 1.0–23.0; p = 0.05]. Other cytokines were similar between cases and controls. Progesterone treatment did not suppress cytokine concentrations. Interleukin (IL)-6, IL-8, granulocyte colony-stimulating factor (G-CSF), interferon (IFN)-γ and tumour necrosis factor (TNF)-α concentrations were higher following randomization to cerclage versus progesterone (p<0.05). Cerclage, but not progesterone treatment, was followed by a significant increase in cervical length [mean 11.4 mm, CI 5.0–17.7; p<0.001].

Conclusions

Although GM-CSF and MCP-1 cervico-vaginal fluid concentrations were raised, the majority of cervico-vaginal cytokines did not increase in association with cervical shortening. Progesterone treatment showed no significant anti-inflammation action on cytokine concentrations. Cerclage insertion was associated with an increase in the majority of inflammatory markers and cervical length.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号