首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   11篇
  118篇
  2022年   4篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   11篇
  2013年   3篇
  2012年   13篇
  2011年   13篇
  2010年   5篇
  2009年   7篇
  2008年   12篇
  2007年   8篇
  2006年   5篇
  2005年   7篇
  2004年   6篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
71.
Pathology of the human pituitary adenomas   总被引:1,自引:1,他引:1  
  相似文献   
72.
73.
UV-B irradiation is one of the risk factors in age-related diseases. We have reported that biologically uncommon D-β-Asp residues accumulate in proteins from sun-exposed elderly human skin. A previous study also reported that carboxymethyl lysine (CML; one of the advanced glycation end products (AGEs)) which is produced by the oxidation of glucose and peroxidation of lipid, also increases upon UV B irradiation. The formation of D-β-Asp and CML were reported as the alteration of proteins in UV B irradiated skin, independently. In this study, in order to clarify the relationship between the formation of D-β-Asp and CML, immunohistochemical analysis using anti-D-β-Asp containing peptide antibodies and anti-CML antibodies was performed in UV B irradiated mice. Immunohistochemical analyses clearly indicated that an anti-D-β-Asp containing peptide antibody and anti-CML antibody reacted at a common area in UV B irradiated skin. Western blot analyses of the proteins isolated from UV B irradiated skin demonstrated that proteins of 50-70 kDa were immunoreactive towards antibodies for both D-β-Asp containing peptide and CML. These proteins were identified by proteomic analysis as members of the keratin families including keratin-1, keratin-6B, keratin-10, and keratin-14.  相似文献   
74.
Phosphatidylinositol-3-phosphate (PI3P) is a lipid that is enriched specifically in early endosomes. Given that early endosomes containing PI3P act as a microdomain to recruit proteins that contain a PI3P-binding domain (FYVE domain), the equilibrium between the production and degradation of PI3P influences a variety of processes, including endocytosis and signal transduction via endosomes. In the study reported herein, we have developed a novel analytical method to quantify the amount of PI3P in endosomes by introducing a GST-2xFYVE protein probe into semi-intact cells. The GST-2xFYVE probe was targeted specifically to intracellular PI3P-containing endosomes, which retained their small punctate structure, and allowed the semi-quantitative measurement of intracellular PI3P. Using the method, we found that treatment of HeLa cells with H(2)O(2) decreased the amount of PI3P in endosomes in a p38 MAPK-dependent manner. In addition, H(2)O(2) treatment delayed transport through various endocytic pathways, especially post-early endosome transport; the retrograde transport of cholera toxin was especially dependent on the amount of PI3P in endosomes. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   
75.
76.
Tissue-specific functions of the circadian clock in Arabidopsis have recently been revealed. The vasculature clock shows distinctive gene expression profiles compared to the clock in other tissues under light-dark cycles. However, it has not yet been established whether the vasculature clock also shows unique gene expression patterns that correlate with temperature cycles, another important environmental cue. Here, we detected diel phase of TIMING OF CAB EXPRESSION 1 (TOC1) expression in the vasculature and whole leaf under long-day light-dark cycles and temperature cycles. We found that the vasculature clock had advanced TOC1 phase under light-dark cycles but not under temperature cycles, suggesting that the vasculature clock has lower sensitivity against temperature signals. Furthermore, the phase advancement of TOC1 was seen only under long-day condition but not under short-day condition. These results support our previous conclusion that the circadian clock in vasculature preferentially senses photoperiodic signals.  相似文献   
77.
Mutations in SHP-2 phosphatase that cause hyperactivation of its catalytic activity have been identified in human leukemias, particularly juvenile myelomonocytic leukemia, which is characterized by hypersensitivity of myeloid progenitor cells to granulocyte macrophage colony-stimulating factor and interleukin (IL)-3. However, the molecular mechanisms by which gain-of-function (GOF) mutations of SHP-2 induce hematopoietic malignancies are not fully understood. Our previous studies have shown that SHP-2 plays an essential role in IL-3 signal transduction in both catalytic-dependent and -independent manners and that overexpression (5-6-fold) of wild type (WT) SHP-2 attenuates IL-3-mediated hematopoietic cell function through accelerated dephosphorylation of STAT5. These results raised the possibility that SHP-2-associated leukemias are not solely attributed to the increased catalytic activity of GOF mutant SHP-2. GOF mutant SHP-2 must have gained additional capacities. To test this possibility, we investigated effects of a GOF mutation of SHP-2 (SHP-2 E76K) on hematopoietic cell function and IL-3 signal transduction by comparing with those of overexpressed WT SHP-2. Our results showed that SHP-2 E76K mutation caused myeloproliferative disease in mice, while overexpression of WT SHP-2 decreased hematopoietic potential of the transduced cells in recipient animals. The E76K mutation in the N-terminal Src homology 2 domain increased interactions of mutant SHP-2 with Grb2, Gab2, and p85, leading to hyperactivation of IL-3-induced Erk and phosphatidylinositol 3-kinase (PI3K) pathways. In addition, despite the substantial increase in the catalytic activity, dephosphorylation of STAT5 by SHP-2 E76K was dampened. Furthermore, catalytically inactive SHP-2 E76K with an additional C459S mutation retained the capability to increase the interaction with Gab2 and to enhance the activation of the PI3K pathway. Taken together, these studies suggest that in addition to the elevated catalytic activity, fundamental changes in physical and functional interactions between GOF mutant SHP-2 and signaling partners also play an important role in SHP-2-related leukemigenesis.  相似文献   
78.
The establishment of pregnancy requires bidirectional communication between the developing conceptus and the uterine endometrium. The aim of this study was to establish an in vitro coculture system with bovine trophoblast cells and uterine epithelial cells (EECs) that mimics the in vivo attachment process. We previously reported that expression of interferon tau (IFNT), a major secretory product from the trophectoderm, decreases with changes in chromatin structure when the conceptus successfully attaches to the uterine epithelium. Thus, IFNT is a good marker to assess whether attachment has successfully occurred. In this study, bovine trophoblast CT-1 cells were cultured to generate spheroids, which were then placed on type I collagen-coated plates (monoculture) or bovine EECs (coculture) with or without uterine flushings collected from Day 15 cyclic or Days 15, 17, or 19 pregnant animals. In the coculture but not the monoculture, addition of uterine flushings from Day 15 or 17 pregnant animals resulted in decreased IFNT and CDX2 mRNA expression in CT-1 spheroids, accompanied with changes in histone modifications. In monocultured CT-1 spheroids, integrin subunit ITGA8 and ITGB3 mRNAs were minimally expressed but were induced in cocultured CT-1 spheroids with or without uterine flushings. Expression of CDH2, another marker for bovine conceptus attachment to the uterine epithelium, was also induced in the cocultured CT-1 spheroids. These results suggest that this in vitro coculture system could be used to isolate processes essential for conceptus attachment to uterine EECs.  相似文献   
79.
Plant viral symptoms are rarely explained by direct molecular interaction between a viral protein and a host factor, but rather understood as a consequence of arms race between host RNA silencing and viral silencing suppressors. However, we have recently demonstrated that the 2b protein (2b) of Cucumber mosaic virus (CMV) HL strain could bind to Arabidopsis catalase that is important in scavenging cellular hydrogen peroxide, leading to the induction of distinct necrosis on Arabidopsis. Because we previously used virulent strains of subgroup I CMV in the study, we here further analyzed mild strains of subgroup II CMV, which share 70 to 80% sequence homology with subgroup I, to understand whether the necrosis induction is a general phenomenon to compromise host defense system mediated by catalase in the pathosystem of any CMV strains and Arabidopsis. Based on the results, we concluded that 2bs of subgroup II could also bind to catalase, resulting in decrease in catalase activity and weak necrosis on Arabidopsis. Because the 2b-catalase interaction did not prevent CMVs from spreading, it may eventually operate in favor of CMV.  相似文献   
80.
Renal fibrosis and inflammation are associated with hypoxia, and tissue pO(2) plays a central role in modulating the progression of chronic kidney disease. Key mediators of cellular adaptation to hypoxia are hypoxia-inducible factor (HIF)-1 and -2. In the kidney, they are expressed in a cell type-specific manner; to what degree activation of each homolog modulates renal fibrogenesis and inflammation has not been established. To address this issue, we used Cre-loxP recombination to activate or to delete both Hif-1 and Hif-2 either globally or cell type specifically in myeloid cells. Global activation of Hif suppressed inflammation and fibrogenesis in mice subjected to unilateral ureteral obstruction, whereas activation of Hif in myeloid cells suppressed inflammation only. Suppression of inflammatory cell infiltration was associated with downregulation of CC chemokine receptors in renal macrophages. Conversely, global deletion or myeloid-specific inactivation of Hif promoted inflammation. Furthermore, prolonged hypoxia suppressed the expression of multiple inflammatory molecules in noninjured kidneys. Collectively, we provide experimental evidence that hypoxia and/or myeloid cell-specific HIF activation attenuates renal inflammation associated with chronic kidney injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号