首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   11篇
  2021年   1篇
  2017年   6篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   8篇
  2011年   5篇
  2010年   5篇
  2009年   1篇
  2008年   12篇
  2007年   16篇
  2006年   13篇
  2005年   7篇
  2004年   7篇
  2003年   11篇
  2002年   8篇
  2001年   10篇
  2000年   16篇
  1999年   11篇
  1998年   4篇
  1997年   3篇
  1994年   1篇
  1993年   3篇
  1992年   5篇
  1991年   8篇
  1990年   3篇
  1989年   1篇
  1988年   7篇
  1987年   3篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   5篇
  1973年   1篇
  1968年   1篇
  1966年   1篇
  1965年   3篇
  1961年   1篇
排序方式: 共有215条查询结果,搜索用时 265 毫秒
61.
Benzo[a]pyrene [B(a)P], a potent procarcinogen found in combustion products such as diesel exhaust and cigarette smoke, has been recently shown to activate the c-Jun NH(2)-terminal kinase 1 (JNK1) and induce caspase-3-mediated apoptosis in Hepa1c1c7 cells. However, the molecules of the signaling pathway that control the mitogen-activated protein kinase cascades induced by B(a)P and the interaction between those and apoptosis by B(a)P have not been well defined. We report here that B(a)P promoted Cdc42/Rac1, p21-activated kinase 1 (PAK1), and JNK1 activities in 293T and HeLa cells. Moreover, alpha-PAK-interacting exchange factor (alpha PIX) mRNA and its protein expression were upregulated by B(a)P. While overexpression of an active mutant of alpha PIX (DeltaCH) facilitated B(a)P-induced activation of Cdc42/Rac1, PAK1, and JNK1, overexpression of mutated alphaPIX (L383R, L384S), which lacks guanine nucleotide exchange factor activity, SH3 domain-deleted alphaPIX (Delta SH3), which lacks the ability to bind PAK, kinase-negative PAK1 (K299R), and kinase-negative SEK1 (K220A, K224L) inhibited B(a)P-triggered JNK1 activation. Interestingly, overexpression of alphaPIX (Delta CH) and a catalytically active mutant PAK1 (T423E) accelerated B(a)P-induced apoptosis in HeLa cells, whereas alphaPIX (Delta SH3), PAK1 (K299R), and SEK 1 (K220A, K224L) inhibited B(a)P-initiated apoptosis. Finally, a preferential caspase inhibitor, Z-Asp-CH2-DCB, strongly blocked the alphaPIX (Delta CH)-enhanced apoptosis in cells treated with B(a)P but did not block PAK1/JNK1 activation. Taken together, these results indicate that alphaPIX plays a crucial role in B(a)P-induced apoptosis through activation of the JNK1 pathway kinases.  相似文献   
62.
A role for small-conductance Ca2+-activatedK+ (SK) channels on spontaneous motility of thegastrointestinal tract has been suggested. Although four subtypes of SKchannels were identified in mammalian tissues, the subtypes of SKchannel expressed in the gastrointestinal tract are still unknown. Inthis study, we investigated the expression and localization of SKchannels in the gastrointestinal tract. RT-PCR analysis showsexpression of SK3 and SK4 mRNA, but not SK1 or SK2 mRNA, in the ratintestine. SK3 immunoreactivity was detected in the myenteric plexusand muscular layers of the stomach, ileum, and colon.SK3-immunoreactive cells were stained with antibody forc-kit, a marker for the interstitial cells of Cajal (ICC), but not with that for glial fibrillary acidic protein in the ileum andstomach. Immunoelectron microscopic analysis indicates that SK3channels are localized on processes of ICC that are located close tothe myenteric plexus between the longitudinal and circular musclelayers and within the muscular layers. Because ICC have been identifiedas pacemaker cells and are known to play a major role in generating theregular motility of the gastrointestinal tract, these results suggestthat SK3 channels, which are expressed specifically in ICC, play animportant role in generating a rhythmic pacemaker current in thegastrointestinal tract.

  相似文献   
63.
64.
A novel ganglioside, de-N-acetyl-GM3 (neuraminyllactosylceramide, II3NeuNH2LacCer), was found in the monosialoganglioside fraction of A431 cells and B16 melanoma cells by high-performance liquid chromatography, thin-layer chromatography, and immunoblotting with its specific monoclonal antibody DH5. This novel type of membrane ganglioside strongly enhanced the kinase activity associated with the epidermal growth factor (EGF) receptor, and it showed 32, 35, and 12% growth stimulation as compared with control cultures of A431, Swiss 3T3, and B16 melanoma cells, respectively. Exogenously added de-N-acetyl-GM3 did not alter the affinity of EGF binding to its receptor. These properties of de-N-acetyl-GM3 are in striking contrast to those of GM3 and its lyso derivative (lyso-GM3) which were previously shown to inhibit EGF receptor kinase activity and to inhibit growth in the same cells. These data indicate that de-N-acetylation at the sialic acid moiety of GM3 ganglioside is an important mechanism for modulation of EGF-dependent cell growth. The mechanism is antagonistic to that of GM3-dependent modulation of receptor function.  相似文献   
65.
The enzyme ATP citrate lyase (ACL) catalyzes the formation of cytosolic acetyl CoA, the starting material for de novo lipid and cholesterol biosynthesis. The dysfunction and upregulation of ACL in numerous cancers makes it an attractive target for developing anticancer therapies. ACL inhibition by shRNA knockdown limits cancer cell proliferation and reduces cancer stemness. We designed and implemented a dual docking protocol to select virtual ACL inhibitors that were scored among the top 10 percentiles by both the Autodock Vina and the Glamdock algorithms. Via this in silico screens of a focused furoic acid library, we discovered four subtypes of furans and benzofurans as novel ACL inhibitors. The hit rate of our in silico protocol was 45.8% with 11 of 24 virtual hits confirmed as active in an in vitro ACL enzymatic assay. The IC50 of the most potent ACL inhibitor A1 is 4.1 μM. Our results demonstrated remarkable hit rate by the dual docking approach and provided novel chemical scaffolds for the development of ACL inhibitors for the treatment of cancer.  相似文献   
66.
The aim of this study was to develop and evaluate a floating multiparticulate gastroretentive system for the modified release of zidovudine (AZT). AZT was used as a model drug water-soluble at therapeutic doses. The floating gastroretentive system was obtained by co-precipitation, after solvent diffusion and evaporation. The proposed system was evaluated in vitro for particle morphology, lag time and floating time, loading rate, release profile, and the release kinetic of AZT release. AZT’s physico-chemical characteristics were evaluated by differential scanning calorimetry (DSC), X-ray diffraction (XDR) and infrared spectroscopy (IR). The particles obtained were sphere-shaped, hollow, and had porous walls. The floating was immediate, and floating time was higher than 12 h. The loading rate was 34.0 ± 9.0%. The system obtained had an extended release. DSC and XDR results showed a modification in AZT’s solid state. IR spectroscopy revealed that the chemical structure of the AZT was unchanged. The hollow microballoons presented gastroretentive, floating, and extended-release properties.  相似文献   
67.
68.
Catechin, one of the major flavonoids presented in plants such as tea, reportedly suppresses bone resorption. We previously reported that prostaglandin F(2alpha) (PGF(2alpha)) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells. To clarify the mechanism of catechin effect on osteoblasts, we investigated the effect of (--)-epigallocatechin gallate (EGCG), one of the major green tea flavonoids, on the VEGF synthesis by PGF(2alpha) in MC3T3-E1 cells. The PGF(2alpha)-induced VEGF synthesis was significantly enhanced by EGCG. The amplifying effect of EGCG was dose dependent between 10 and 100 microM. EGCG did not affect the PGF(2alpha)-induced phosphorylation of p44/p42 MAP kinase. SB203580, a specific inhibitor of p38 MAP kinase, and SP600125, a specific inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), reduced the PGF(2alpha)-induced VEGF synthesis. EGCG markedly enhanced the phosphorylation of SAPK/JNK induced by PGF(2alpha) without affecting the PGF(2alpha)-induced phosphorylation of p38 MAP kinase. SP600125 markedly reduced the amplification by EGCG of the SAPK/JNK phosphorylation. In addition, the PGF(2alpha)-induced phosphorylation of c-Jun was amplified by EGCG. These results strongly suggest that EGCG upregulate PGF(2alpha)-stimulated VEGF synthesis resulting from amplifying activation of SAPK/JNK in osteoblasts.  相似文献   
69.
Since carnitine plays an important role in fat oxidation, influx of carnitine could be crucial for muscle metabolism. OCTN2 (SLC22A5), a sodium-dependent solute carrier, is assumed to transport carnitine into skeletal muscle cells. Acute regulation of OCTN2 activity in rat hindlimb muscles was investigated in response to electrically induced contractile activity. The tissue uptake clearance (CL(uptake)) of l-[(3)H]carnitine during muscle contraction was examined in vivo using integration plot analysis. The CL(uptake) of [(14)C]iodoantipyrine (IAP) was also determined as an index of tissue blood flow. To test the hypothesis that increased carnitine uptake involves the translocation of OCTN2, contraction-induced alteration in the subcellular localization of OCTN2 was examined. The CL(uptake) of l-[(3)H]carnitine in the contracting muscles increased 1.4-1.7-fold as compared to that in the contralateral resting muscles (p<0.05). The CL(uptake) of [(14)C]IAP was much higher than that of l-[(3)H]carnitine, but no association between the increase in carnitine uptake and blood flow was obtained. Co-immunostaining of OCTN2 and dystrophin (a muscle plasma membrane marker) showed an increase in OCTN2 signal in the plasma membrane after muscle contraction. Western blotting showed that the level of sarcolemmal OCTN2 was greater in contracting muscles than in resting muscles (p<0.05). The present study showed that muscle contraction facilitated carnitine uptake in skeletal muscles, possibly via the contraction-induced translocation of its specific transporter OCTN2 to the plasma membrane.  相似文献   
70.
We have previously reported that prostaglandin D2 (PGD2) stimulates interleukin-6 (IL-6), a potent bone resorptive agent, in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether Rho-kinase is implicated in the PGD2-stimulated IL-6 synthesis in MC3T3-E1 cells. PGD2 time-dependently induced the phosphorylation of myosin phosphatase targeting subunit (MYPT-1), a Rho-kinase substrate. Y27632, a specific Rho-kinase inhibitor, significantly reduced the PGD2-stimulated IL-6 synthesis as well as the MYPT-1 phosphorylation. Fasudil, another inhibitor of Rho-kinase, suppressed the PGD2-stimulated IL-6 synthesis. The PGD2-stimulated IL-6 synthesis was reduced by PD98059, a MEK inhibitor, and SB203580, an inhibitor of p38 mitogen-activated protein (MAP) kinase, but not SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). However, Y27632 and fasudil failed to affect the PGD2-induced phosphorylation of p44/p42 MAP kinase. On the other hand, Y27632 as well as fasudil markedly attenuated the PGD2-induced phosphorylation of p38 MAP kinase. In addition, PGD2 additively induced IL-6 synthesis in combination with endothelin-1 which induces IL-6 synthesis through p38 MAP kinase regulated by Rho-kinase. These results strongly suggest that Rho-kinase regulates PGD2-stimulated IL-6 synthesis via p38 MAP kinase activation in osteoblasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号