首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   10篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   7篇
  2011年   7篇
  2010年   5篇
  2009年   1篇
  2008年   4篇
  2007年   11篇
  2006年   14篇
  2005年   4篇
  2004年   13篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  1997年   3篇
  1996年   2篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
51.
52.
Apocrine secretory vesicles have been observed in the lumen of several ducts of the male genital tract, namely the epididymis and vas deferens. Initially considered to be tissue-fixation artefacts, they are now recognized as genuine elements, which might play physiological roles in terms of sperm maturation. The aim of this review is to present these vesicles observed in various mammalian species and to describe their respective organization, content and putative roles.  相似文献   
53.
Symbiobacterium thermophilum is a tryptophanase-positive thermophile which shows normal growth only in coculture with its supporting bacteria. Analysis of the 16S rRNA gene (rDNA) indicated that the bacterium belongs to a novel phylogenetic branch at the outermost position of the gram-positive bacterial group without clustering to any other known genus. Here we describe the distribution and diversity of S. thermophilum and related bacteria in the environment. Thermostable tryptophanase activity and amplification of the specific 16S rDNA fragment were effectively employed to detect the presence of Symbiobacterium. Enrichment with kanamycin raised detection sensitivity. Mixed cultures of thermophiles containing Symbiobacterium species were frequently obtained from compost, soil, animal feces, and contents in the intestinal tracts, as well as feeds. Phylogenetic analysis and denaturing gradient gel electrophoresis of the specific 16S rDNA amplicons revealed a diversity of this group of bacteria in the environment.  相似文献   
54.
PAMP (pathogen-associated molecular pattern) recognition plays an important role during the innate immune response in both plants and animals. Lipopolysaccharides (LPS) derived from Gram-negative bacteria are representative of typical PAMP molecules and have been reported to induce defense-related responses, including the suppression of the hypersensitive response, the expression of defense genes and systemic resistance in plants. However, the details regarding the precise molecular mechanisms underlying these cellular responses, such as the molecular machinery involved in the perception and transduction of LPS molecules, remain largely unknown. Furthermore, the biological activities of LPS on plants have so far been reported only in dicots and no information is thus available regarding their functions in monocots. In our current study, we report that LPS preparations for various becteria, including plant pathogens and non-pathogens, can induce defense responses in rice cells, including reactive oxygen generation and defense gene expression. In addition, global analysis of gene expression induced by two PAMPs, LPS and chitin oligosaccharide, also reveals a close correlation between the gene responses induced by these factors. This indicates that there is a convergence of signaling cascades downstream of their corresponding receptors. Furthermore, we show that the defense responses induced by LPS in the rice cells are associated with programmed cell death (PCD), which is a finding that has not been previously reported for the functional role of these molecules in plant cells. Interestingly, PCD induction by the LPS was not detected in cultured Arabidopsis thaliana cells.  相似文献   
55.
Chitin is a component of fungal cell walls, and its fragments act as elicitors in many plants. The plasma membrane glycoprotein CEBiP, which possesses LysM domains, is a receptor for the chitin elicitor (CE) in rice. Here, we report that the perception of CE by CEBiP contributes to disease resistance against the rice blast fungus, Magnaporthe oryzae, and that enhanced responses to CE by engineering CEBiP increase disease tolerance. Knockdown of CEBiP expression allowed increased spread of the infection hyphae. To enhance defense responses to CE, we constructed chimeric genes composed of CEBiP and Xa21, which mediate resistance to rice bacterial leaf blight. The expression of either CRXa1 or CRXa3, each of which contains the whole extracellular portion of CEBiP, the whole intracellular domain of XA21, and the transmembrane domain from either CEBiP or XA21, induced cell death accompanied by an increased production of reactive oxygen and nitrogen species after treatment with CE. Rice plants expressing the chimeric receptor exhibited necrotic lesions in response to CE and became more resistant to M. oryzae. Deletion of the first LysM domain in CRXA1 abolished these cellular responses. These results suggest that CEs are produced and recognized through the LysM domain of CEBiP during the interaction between rice and M. oryzae and imply that engineering pattern recognition receptors represents a new strategy for crop protection against fungal diseases.  相似文献   
56.
The total synthesis of largazole and four analogues is reported. All analogues were nanomolar HDAC inhibitors. The antiproliferative activity is driven by lipophilicity and cell permeability. In murine liver homogenates, largazole is rapidly metabolized (half-life ≤5 min) to the thiol which has a half-life of 51 min.  相似文献   
57.
Asymmetric cyclopropanation of styrenes by tert-butyl diazoacetate followed by ester hydrolysis and Curtius rearrangement gave a series of tranylcypromine analogues as single enantiomers. The o,- m- and p-bromo analogues were all more active than tranylcypromine in a LSD1 enzyme assay. The m- and p-bromo analogues were micromolar growth inhibitors of the LNCaP prostate cancer cell line as were the corresponding biphenyl analogues prepared from the bromide by Suzuki crosscoupling.  相似文献   
58.
The biological role of a secretory catalase of the rice blast fungus Magnaporthe oryzae was studied. The internal amino acid sequences of the partially purified catalase in the culture filtrate enabled us to identify its encoding gene as a catalase-peroxidase gene, CPXB, among four putative genes for catalase or catalase-peroxidase in M. oryzae. Knockout of the gene drastically reduced the level of catalase activity in the culture filtrate and supernatant of conidial suspension (SCS), and increased the sensitivity to exogenously added H?O? compared with control strains, suggesting that CPXB is the major gene encoding the secretory catalase and confers resistance to H?O? in hyphae. In the mutant, the rate of appressoria that induced accumulation of H?O? in epidermal cells of the leaf sheath increased and infection at early stages was delayed; however, the formation of lesions in the leaf blade was not affected compared with the control strain. These phenotypes were complimented by reintroducing the putative coding regions of CPXB driven by a constitutive promoter. These results suggest that CPXB plays a role in fungal defense against H?O? accumulated in epidermal cells of rice at the early stage of infection but not in pathogenicity of M. oryzae.  相似文献   
59.
Prion diseases are neurodegenerative disorders caused by the accumulation of abnormal prion protein (PrPSc) in the central nervous system. With the aim of elucidating the mechanism underlying the accumulation and degradation of PrPSc, we investigated the role of autophagy in its degradation, using cultured cells stably infected with distinct prion strains. The effects of pharmacological compounds that inhibit or stimulate the cellular signal transduction pathways that mediate autophagy during PrPSc degradation were evaluated. The accumulation of PrPSc in cells persistently infected with the prion strain Fukuoka-1 (FK), derived from a patient with Gerstmann–Sträussler–Scheinker syndrome, was significantly increased in cultures treated with the macroautophagy inhibitor 3-methyladenine (3MA) but substantially reduced in those treated with the macroautophagy inducer rapamycin. The decrease in FK-derived PrPSc levels was mediated, at least in part, by the phosphatidylinositol 3-kinase/MEK signalling pathway. By contrast, neither rapamycin nor 3MA had any apparently effect on PrPSc from either the 22L or the Chandler strain, indicating that the degradation of PrPSc in host cells might be strain-dependent.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号