首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2263篇
  免费   173篇
  国内免费   2篇
  2438篇
  2024年   3篇
  2023年   5篇
  2022年   26篇
  2021年   35篇
  2020年   21篇
  2019年   44篇
  2018年   57篇
  2017年   59篇
  2016年   107篇
  2015年   151篇
  2014年   150篇
  2013年   165篇
  2012年   214篇
  2011年   201篇
  2010年   141篇
  2009年   121篇
  2008年   150篇
  2007年   144篇
  2006年   119篇
  2005年   111篇
  2004年   136篇
  2003年   89篇
  2002年   66篇
  2001年   18篇
  2000年   18篇
  1999年   23篇
  1998年   11篇
  1997年   11篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1857年   1篇
  1856年   2篇
排序方式: 共有2438条查询结果,搜索用时 15 毫秒
41.
42.
Prions are self-propagating conformations of proteins that can cause heritable phenotypic traits. Most yeast prions contain glutamine (Q)/asparagine (N)-rich domains that facilitate the accumulation of the protein into amyloid-like aggregates. Efficient transmission of these infectious aggregates to daughter cells requires that chaperones, including Hsp104 and Sis1, continually sever the aggregates into smaller “seeds.” We previously identified 11 proteins with Q/N-rich domains that, when overproduced, facilitate the de novo aggregation of the Sup35 protein into the [PSI +] prion state. Here, we show that overexpression of many of the same 11 Q/N-rich proteins can also destabilize pre-existing [PSI +] or [URE3] prions. We explore in detail the events leading to the loss (curing) of [PSI+] by the overexpression of one of these proteins, the Q/N-rich domain of Pin4, which causes Sup35 aggregates to increase in size and decrease in transmissibility to daughter cells. We show that the Pin4 Q/N-rich domain sequesters Hsp104 and Sis1 chaperones away from the diffuse cytoplasmic pool. Thus, a mechanism by which heterologous Q/N-rich proteins impair prion propagation appears to be the loss of cytoplasmic Hsp104 and Sis1 available to sever [PSI +].  相似文献   
43.
We investigated the physiological and biochemical bases for salt tolerance in two rice (Oryza sativa L.) cultivars — relatively salt-tolerant ‘Dongjin’ and salt-sensitive ‘Kumnam’. Salinized hydroponic cultures were studied at the germination and seedling stages. NaCI inhibited germination more severely in ‘Kumnam’ than in ‘Dongjin’. Increasing the salt concentration also deterred growth to a larger extent in the former. Moreover, the leaves of ‘Kumnam’ exhibited greater increases in lipid peroxidation and Na+ accumulation than those of ‘Dongjin’ under stress. The activities of constitutive and salt-induced superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (AP, EC 1.11.1.11) were also higher in ‘Kumnam’, while only catalase (CAT, EC 1.11.1.6) activity was slightly higher in stressed plants of ‘Dongjin’. The positive correlation between leaf proline levels and NaCI concentration was more evident in ‘Kumnam’. However, ‘Dongjin’ seeds, which had higher germinability in the presence of NaCI, also contained more proline. These results suggest that the higher salt tolerance in ‘Dongjin’ seedlings could be ascribed to their lower NaCI accumulations in the leaves. This presumably is due to reductions in the uptake or transport rates of saline ions to the shoots from the roots. Finally, we believe that the higher germination rate by ‘Dongjin’ is caused by its higher seed proline content.  相似文献   
44.
Developing methods to label viruses with fluorescent moieties has its merits in elucidating viral infection mechanisms and exploring novel antiviral therapeutics. Fluorescent quantum dots (QDs), an emerging probe for biological imaging and medical diagnostics, were employed in this study to tag retrovirus encoding enhanced green fluorescent protein (EGFP) genes. Electrostatic repulsion forces generated from both negatively charged retrovirus and QDs were neutralized by cationic Polybrene, forming colloidal complexes of QDs-virus. By examining the level of EGFP expression in 3T3 fibroblast cells treated with QDs-tagged retroviruses for 24 hours, the infectivity of retrovirus incorporated with QDs was shown to be only slightly decreased. Moreover, the imaging of QDs can be detected in the cellular milieu. In summary, the mild method developed here makes QDs-tagged virus a potential imaging probe for direct tracking the infection process and monitoring distribution of viral particles in infected cells.  相似文献   
45.
Sera from porcine parvovirus (PPV)-infected swine fetuses immunoprecipitated and 84- to 86-kilodalton polypeptide in addition to the A and B virion structural proteins. This polypeptide, designated NS-1, was present in PPV-infected cell lysates but not in purified virions. Partial proteolysis mapping revealed that NS-1 was not related to the A and B viral structural proteins. All three proteins in infected cells were phosphorylated at serine residues, and NS-1 also contained phosphothreonine. From pulse-labeling experiments with either 32Pi or [35S]methionine, NS-1 was found to first appear 5 to 7 h postinfection, whereas the viral structural polypeptides were first synthesized 9 to 11 h postinfection. Pulse-chase experiments revealed that NS-1 initially appeared as an 84-kilodalton protein and was subsequently structurally modified to forms of slower electrophoretic mobilities. The time of appearance of NS-1 after virus infection coincided with the initiation of viral DNA synthesis, suggesting that this polypeptide (and the modified forms thereof) may be involved in PPV replication.  相似文献   
46.
Lithium metal anodes are steadily gaining more attention, as their superior specific capacities and low redox voltage can significantly increase the energy density of rechargeable batteries far beyond those of current Li‐ion batteries. Nonetheless, the relevant technology is still in a premature research stage mainly due to the uncontrolled growth of Li dendrites that ceaselessly cause unwanted side reactions with electrolyte. In order to circumvent this shortcoming, herein, an ionic liquid additive, namely, 1‐dodecyl‐1‐methylpyrrolidinium (Pyr1(12)+) bis(fluorosulfonyl)imide (FSI?), for conventional electrolyte solutions is reported. The Pyr1(12)+ cation with a long aliphatic chain mitigates dendrite growth via the combined effects of electrostatic shielding and lithiophobicity, whereas the FSI? anion can induce the formation of rigid solid–electrolyte interphase layers. The synergy between the cation and anion significantly improves cycling performance in asymmetric and symmetric control cells and a full cell paired with an LiFePO4 cathode. The present study provides a useful insight into the molecular engineering of electrolyte components by manipulating the charge and structures of the involved molecules.  相似文献   
47.
48.
Alkaline-oxidative (A/O) pretreatment and enzymatic saccharification were optimized for bioethanol fermentation from water hyacinth by Saccharomyces cerevisiae. Water hyacinth was subjected to A/O pretreatment at various NaOH and H(2)O(2) concentrations and reaction temperatures for the optimization of bioethanol fermentation by S. cerevisiae. The most effective condition for A/O pretreatment was 7% (w/v) NaOH at 100 °C and 2% (w/v) H(2)O(2). The carbohydrate content was analyzed after reaction at various enzyme concentrations and enzyme ratios using Celluclast 1.5 L and Viscozyme L to determine the effective conditions for enzymatic saccharification. After ethanol fermentation using S. cerevisiae KCTC 7928, the concentration of glucose, ethanol and glycerol was analyzed by HPLC using a RI detector. The yield of ethanol in batch fermentation was 0.35 g ethanol/g biomass. Continuous fermentation was carried out at a dilution rate of 0.11 (per h) and the ethanol productivity was 0.77 [g/(l h)].  相似文献   
49.
Initiation of simian virus 40 (SV40) DNA replication is dependent upon the assembly of two T-antigen (T-ag) hexamers on the SV40 core origin. To further define the oligomerization mechanism, the pentanucleotide requirements for T-ag assembly were investigated. Here, we demonstrate that individual pentanucleotides support hexamer formation, while particular pairs of pentanucleotides suffice for the assembly of T-ag double hexamers. Related studies demonstrate that T-ag double hexamers formed on “active pairs” of pentanucleotides catalyze a set of previously described structural distortions within the core origin. For the four-pentanucleotide-containing wild-type SV40 core origin, footprinting experiments indicate that T-ag double hexamers prefer to bind to pentanucleotides 1 and 3. Collectively, these experiments demonstrate that only two of the four pentanucleotides in the core origin are necessary for T-ag assembly and the induction of structural changes in the core origin. Since all four pentanucleotides in the wild-type origin are necessary for extensive DNA unwinding, we concluded that the second pair of pentanucleotides is required at a step subsequent to the initial assembly process.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号