首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37243篇
  免费   3315篇
  国内免费   1084篇
  2023年   250篇
  2022年   649篇
  2021年   1180篇
  2020年   798篇
  2019年   989篇
  2018年   1176篇
  2017年   834篇
  2016年   1349篇
  2015年   1945篇
  2014年   2196篇
  2013年   2506篇
  2012年   3070篇
  2011年   2762篇
  2010年   1780篇
  2009年   1533篇
  2008年   2053篇
  2007年   1858篇
  2006年   1667篇
  2005年   1491篇
  2004年   1387篇
  2003年   1212篇
  2002年   1085篇
  2001年   744篇
  2000年   638篇
  1999年   590篇
  1998年   368篇
  1997年   299篇
  1996年   230篇
  1995年   230篇
  1994年   216篇
  1993年   194篇
  1992年   301篇
  1991年   311篇
  1990年   276篇
  1989年   278篇
  1988年   245篇
  1987年   231篇
  1986年   214篇
  1985年   199篇
  1984年   156篇
  1983年   128篇
  1982年   129篇
  1981年   126篇
  1980年   107篇
  1979年   138篇
  1978年   126篇
  1976年   105篇
  1975年   123篇
  1974年   114篇
  1973年   100篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
991.
992.
Cholesteryl ester transfer protein (CETP) is a target of therapeutic intervention for coronary heart disease. Anacetrapib, a potent inhibitor of CETP, has been shown to reduce LDL-cholesterol by 40% and increase HDL-cholesterol by 140% in patients, and is currently being evaluated in a phase III cardiovascular outcomes trial. HDL is known to possess anti-inflammatory properties, however with such large increases in HDL-cholesterol, it is unclear whether CETP inhibition perturbs HDL functionality such as anti-inflammatory effects on endothelial cells. The purpose of the present study was to determine whether CETP inhibition by anacetrapib affects the anti-inflammatory properties of HDL. HDL was isolated from either hamsters treated with vehicle or anacetrapib for 2 weeks, or from normal human subjects treated either placebo, 20 mg, or 150 mg anacetrapib daily for 2 weeks. Anacetrapib treatment increased plasma HDL cholesterol levels by 65% and between 48 and 82% in hamsters and humans, respectively. Pre-incubation of human aortic endothelial cells with HDL isolated from both control and anacetrapib treated hamsters suppressed TNFα induced expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin. Similar results were obtained with human HDL samples pre and post treatment with placebo or anacetrapib. Further, HDL inhibited TNFα-induced MCP-1 secretion, monocyte adhesion and NF-κB activation in endothelial cells, and the inhibition was similar between control and anacetrapib treated groups. These studies demonstrate that anacetrapib treatment does not impair the ability of HDL to suppress an inflammatory response in endothelial cells.  相似文献   
993.
Thermostable amylopullulanases can catalyse the hydrolysis of both α-1,4 and α-1,6 glucosidic bonds and are of considerable interest in the starch saccharification industry. In this study, the gene Apu-Tk encoding an extracellular amylopullulanase was cloned from an extremely thermophilic anaerobic archaeon Thermococcus kodakarensis KOD1. Apu-Tk encodes an 1100-amino acid protein with a 27-residue signal peptide, which has a predicted mass of 125 kDa after signal peptide cleavage. Sequence alignments showed that Apu-Tk contains the five regions conserved in all GH57 family proteins. Full-length Apu-Tk was expressed in Escherichia coli and purified to homogeneity. The purified enzyme displayed both pullulanase and amylase activity. The optimal temperature for Apu-Tk to hydrolyse pullulan and soluble starch was >100 °C. Apu-Tk was also active at a broad range of pH (4–7), with an optimum pH of ~5.0–5.5. Apu-Tk also retained >30% of its original activity and partially folded globular structure in the presence of 8% SDS or 10% β-mercaptoethanol. The high yield, broad pH range, and stability of Apu-Tk implicate it as a potential enzyme for industrial applications.  相似文献   
994.
Pungency in pepper (Capsicum annuum L.) has unique characteristics due to the alkaloid compound group, capsaicinoids, which includes capsaicin. Although capsaicinoids have been proved to have pharmacological and physiological effects on human health, the application of capsaicinoids has been limited because of their pungency. Capsinoids found in non-pungent peppers share closely related structures with capsaicinoids and show similar biological effects. Previous studies demonstrated that mutations in the p-AMT gene were related to the production of capsinoids; however, the pathway of capsinoid synthesis has not yet been fully elucidated. In this study, we performed genetic analysis to determine the mechanism of capsinoid synthesis using a F6 recombinant inbred line population. In this population, the presence/absence of capsinoids co-segregated with the genotype of the Pun1 locus, without exception. In addition, we screened the patterns of capsinoid synthesis and the correlation between the Pun1 locus and capsinoid synthesis in p-AMT mutant accessions. In Capsicum germplasms, we selected amino-acid-substituted mutants in the PLP binding domain of the p-AMT gene. Capsinoids were not synthesized with the recessive pun1 gene, regardless of the p-AMT genotype, and no relationship was found between p-AMT mutant type and capsinoid content. We concluded that the Pun1 gene, which is responsible for capsaicinoid synthesis, also controls capsinoid synthesis.  相似文献   
995.
Melanaphis sacchari causes serious damage to sorghum (Sorghum bicolor (L.) Moench) growth, development and productivity in many countries. A dominant gene (RMES1) conferring resistance to M. sacchari has been found in the grain sorghum variety Henong 16 (HN16), but fine mapping of the RMES1 locus remains to be reported. In this study, genetic populations segregating for RMES1 were prepared with HN16 and BTx623 as parental lines. The latter had been used for sorghum genome sequencing but was found to be susceptible to M. sacchari in this work. A total of 11 molecular markers were mapped to the short arm of chromosome 6 harboring RMES1. The closest markers flanking the RMES1 locus were Sb6m2650 and Sb6rj2776, which delimited a chromosomal region of about 126 kb containing five predicted genes. The utility of the newly identified DNA markers for tagging RMES1 in molecular breeding of M. sacchari resistance, and further efforts in cloning RMES1, are discussed.  相似文献   
996.
Apoptosis is an important aspect of a number of biological processes, from embryogenesis to the stress–injury response. It plays a central role in balancing cell proliferation and tissue remodeling activity in many organisms. In the present study, apoptosis in 14 days post infection schistosomula was evaluated using TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) assays and DAPI staining. Additionally, flow cytometry using the Annexin V-FITC/propidium iodide (PI) (Annexin V/PI) assay confirmed the percentage of early apoptotic, late apoptotic, and necrotic cells in 14 and 23 days post infection worms. Conserved Domain Database (CDD) BLAST analysis and alignment analysis of known schistosome proteins demonstrated the feasibility of detecting the activity of caspase-3 and -7 using the caspase-3/7 Glo analysis assay. Analysis of caspase-3 and -7 activities in schistosome demonstrated that both caspases were active in each developmental stage of Schistosoma japonicum, but was highest in the 14 days post infection schistosomula. Additionally, the caspase peptide inhibitor (Z-VAD-FMK) inhibited the caspase-3/7 activity at all developmental stages examined. Therefore, we hypothesized that two main signaling pathways are involved in apoptosis in S. japonicum, the caspase cascade and the mitochondrial-initiated pathway. We have constructed a model of these two pathways, including how they may interact and their biological outcomes. qRT-PCR analyses of the gene expression profiles of apoptosis-related genes supported our hypothesis of the relationship between the apoptotic pathway and parasite development. The data presented here demonstrates that apoptosis is an important biological process for the survival and development of the schistosome, and identifies potential novel therapeutic targets.  相似文献   
997.
Wildfire and clearcutting are two main disturbances in North American forests, but whether root systems may respond differently to such disturbances is unknown. Here, we studied how the dynamics of fine roots (<2 mm in diameter) varied with stand origins in a boreal forest in northern Ontario, Canada. Fine root biomass increased with stand age, but did not differ between stands originating from fire and clearcutting. By contrast, fine root production, mortality and turnover rates were lower in 3- and 11-year-old clearcut-origin than fire-origin stands, but did not differ in 29-year-old stands of different stand origins. The lower rates of production, mortality, and turnover rates in 3- and 11-year-old clearcut-origin than fire-origin stands are attributable to a lower density of shrubs and herbs and larger nutrient pools after clearcutting than fire. The similarities among 29-year-old stands indicate that the effects of stand origin on fine root processes tend to converge at this time scale. Our results illustrate that time scale is critical for assessing ecosystem responses to disturbances.  相似文献   
998.
Nodose ganglia are composed of A-, Ah- and C-type neurons. Despite their important roles in regulating visceral afferent function, including cardiovascular, pulmonary, and gastrointestinal homeostasis, information about subtype-specific expression, molecular identity, and function of individual ion transporting proteins is scarce. Although experiments utilizing the sliced ganglion preparation have provided valuable insights into the electrophysiological properties of nodose ganglion neuron subtypes, detailed characterization of their electrical phenotypes will require measurements in isolated cells. One major unresolved problem, however, is the difficulty to unambiguously identify the subtype of isolated nodose ganglion neurons without current-clamp recording, because the magnitude of conduction velocity in the corresponding afferent fiber, a reliable marker to discriminate subtypes in situ, can no longer be determined. Here, we present data supporting the notion that application of an algorithm regarding to microscopic structural characteristics, such as neuron shape evaluated by the ratio between shortest and longest axis, neuron surface characteristics, like membrane roughness, and axon attachment, enables specific and sensitive subtype identification of acutely dissociated rat nodose ganglion neurons, by which the accuracy of identification is further validated by electrophysiological markers and overall positive predictive rates is 89.26% (90.04%, 76.47%, and 98.21% for A-, Ah, and C-type, respectively). This approach should aid in gaining insight into the molecular correlates underlying phenotypic heterogeneity of nodose ganglia. Additionally, several critical points that help for neuron identification and afferent conduction calibration are also discussed.  相似文献   
999.
Background aimsMany rodent experiments and human studies on stem cell therapy have shown promising therapeutic approaches to liver diseases. We investigated the clinical outcomes of five patients with liver failure of various causes who received autologous CD34-depleted bone marrow-derived mononuclear cell (BM-MNC) transplantation, including mesenchymal stromal cells, through the hepatic artery.MethodsCD34-depleted BM-MNCs were obtained from five patients waiting for liver transplantation by bone marrow aspiration and using the CliniMACS CD34 Reagent System (Miltenyi Biotech, Bergisch Gladbach, Germany), and autologous hepatic artery infusion was performed. The causes of hepatic decompensation were hepatitis B virus (HBV), hepatitis C virus (HCV), propylthiouracil-induced toxic hepatitis and Wilson disease.ResultsSerum albumin levels improved 1 week after transplantation from 2.8 g/dL, 2.4 g/dL, 2.7 g/dL and 1.9 g/dL to 3.3 g/dL, 3.1 g/dL, 2.8 g/dL and 2.6 g/dL. Transient liver elastography data showed some change from 65 kPa, 33 kPa, 34.8 kPa and undetectable to 46.4 kPa, 19.8 kPa, 29.1 kPa and 67.8 kPa at 4 weeks after transplantation in a patient with Wilson disease, a patient with HCV, and two patients with HBV. Ascites decreased in two patients. One of the patients with HBV underwent liver transplantation 4 months after the infusion, and the hepatic progenitor markers (cytokeratin [CD]-7, CD-8, CD-9, CD-18, CD-19, c-Kit and epithelial cell adhesion molecule [EpCAM]) were highly expressed in the explanted liver.ConclusionsSerum albumin levels, liver stiffness, liver volume, subjective healthiness and quality of life improved in the study patients. Although these findings were observed in a small population, the results may suggest a promising future for autologous CD34-depleted BM-MNC transplantation as a bridge to liver transplantation in patients with liver failure.  相似文献   
1000.

Background

Transglutaminase 2 (TG2) is a post-translational protein-modifying enzyme that catalyzes the transamidation reaction, producing crosslinked or polyaminated proteins. Increased TG2 expression and activity have been reported in various inflammatory conditions, such as rheumatoid arthritis, inflammation-associated pulmonary fibrosis, and autoimmune encephalitis. In particular, TG2 from epithelial cells is important during the initial inflammatory response in the lung. In this study, we evaluated the role of TG2 in the pathogenesis of allergic asthma, particularly whether TG2 affects initial activation signaling leading to Th2 differentiation against antigens.

Methods

We induced allergic asthma by ovalbumin sensitization and intranasal challenge in wild-type (WT) BALB/c and TG2-deficient mice. Broncheoalveolar lavage fluid cells and intracellular cytokine production were analyzed by flow cytometry. Interleukin (IL)-33 and TG2 expression in lung epithelial cells was detected by confocal microscopy.

Results

Airway responsiveness was attenuated in TG2-deficient mice compared to that in the WT control. In addition, recruitment of eosinophils and Th2 and Th17 differentiation decreased in TG2-deficient mice. Treatment with cysteamine, a transglutaminase inhibitor, also reduced airway hypersensitivity, inflammatory cell recruitment, and T helper cell differentiation. TG2-deficient mice showed reduced IL-33 expression following induction of allergic asthma compared to those in the WT control.

Conclusions

We found that pulmonary epithelial cells damaged by allergens triggered TG2-mediated IL-33 expression leading to type 2 responses by recruiting both innate and adaptive arms of the immune system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号