首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19506篇
  免费   1508篇
  国内免费   1088篇
  2024年   53篇
  2023年   232篇
  2022年   585篇
  2021年   920篇
  2020年   606篇
  2019年   744篇
  2018年   839篇
  2017年   555篇
  2016年   854篇
  2015年   1162篇
  2014年   1316篇
  2013年   1471篇
  2012年   1771篇
  2011年   1568篇
  2010年   971篇
  2009年   855篇
  2008年   1068篇
  2007年   937篇
  2006年   829篇
  2005年   737篇
  2004年   585篇
  2003年   550篇
  2002年   474篇
  2001年   357篇
  2000年   298篇
  1999年   289篇
  1998年   180篇
  1997年   137篇
  1996年   105篇
  1995年   111篇
  1994年   78篇
  1993年   70篇
  1992年   96篇
  1991年   96篇
  1990年   87篇
  1989年   68篇
  1988年   56篇
  1987年   53篇
  1986年   39篇
  1985年   44篇
  1984年   23篇
  1983年   24篇
  1982年   21篇
  1981年   13篇
  1979年   20篇
  1978年   16篇
  1977年   19篇
  1976年   15篇
  1975年   14篇
  1972年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
861.
Genetic heterogeneity could reduce the power of linkage analysis to detect risk loci for complex traits such as alcohol dependence (AD). Previously, we performed a genomewide linkage analysis for AD in African-Americans (AAs) (Biol Psychiatry 65:111–115, 2009). The power of that linkage analysis could have been reduced by the presence of genetic heterogeneity owing to differences in admixture among AA families. We hypothesized that by examining a study sample whose genetic ancestry was more homogeneous, we could increase the power to detect linkage. To test this hypothesis, we performed ordered subset linkage analysis in 384 AA families using admixture proportion as a covariate to identify a more homogeneous subset of families and determine whether there is increased evidence for linkage with AD. Statistically significant increases in lod scores in subsets relative to the overall sample were identified on chromosomes 4 (P = 0.0001), 12 (P = 0.021), 15 (P = 0.026) and 22 (P = 0.0069). In a subset of 44 families with African ancestry proportions ranging from 0.858 to 0.996, we observed a genomewide significant linkage at 180 cM on chromosome 4 (lod = 4.24, pointwise P < 0.00001, empirical genomewide P = 0.008). A promising candidate gene located there, GLRA3, which encodes a subunit of the glycine neurotransmitter receptor. Our results demonstrate that admixture proportion can be used as a covariate to reduce genetic heterogeneity and enhance the detection of linkage for AD in an admixed population such as AAs. This approach could be applied to any linkage analysis for complex traits conducted in an admixed population.  相似文献   
862.
Prenatal exposure to alcohol has consistently been associated with adverse effects on neurodevelopment, which is collectively called fetal alcohol spectrum disorder (FASD). Increasing evidence suggest that prenatal exposure to alcohol increases the risk of developing attention deficit/hyperactivity disorder-like behavior in human. In this study, we investigated the behavioral effects of prenatal exposure to EtOH in offspring mice and rats focusing on hyperactivity and impulsivity. We also examined changes in dopamine transporter and MeCP2 expression, which may underlie as a key neurobiological and epigenetic determinant in FASD and hyperactive, inattentive and impulsive behaviors. Mouse or rat offspring born from dam exposed to alcohol during pregnancy (EtOH group) showed hyper locomotive activity, attention deficit and impulsivity. EtOH group also showed increased dopamine transporter and norepinephrine transporter level compared to control group in the prefrontal cortex and striatum. Prenatal exposure to EtOH also significantly decreased the expression of MeCP2 in both prefrontal cortex and striatum. These results suggest that prenatal exposure to EtOH induces hyperactive, inattentive and impulsive behaviors in rodent offspring that might be related to global epigenetic changes as well as aberration in catecholamine neurotransmitter transporter system.  相似文献   
863.
864.
Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the major enzymes responsible for alcohol metabolism in humans. Emerging evidences have shown that functional polymorphisms in ADH and ALDH genes might play a critical role in increasing coronary artery disease (CAD) and myocardial infarction (MI) risks; however, individually published studies showed inconclusive results. The aim of this meta-analysis is to evaluate the associations between the genetic polymorphisms of ADH and ALDH genes with susceptibility to CAD and MI. A literature search was conducted on PubMed, Embase, Web of Science and Chinese BioMedical databases from inception through December 1st, 2012. Crude relative risks (RRs) with 95% confidence intervals (CIs) were calculated. Twelve case–control studies were included with a total of 9616 subjects, including 2053 CAD patients, 1436 MI patients, and 6127 healthy controls. Meta-analysis showed that mutant genotypes (GA + AA) of the rs671 polymorphism in the ALDH2 gene were associated with increased risk of both CAD and MI (CAD: RR = 1.20, 95%CI: 1.03–1.40, P = 0.021; MI: RR = 1.32, 95%CI: 1.11–1.57, P = 0.002). However, there were no significant associations of ADH genetic polymorphisms to CAD and MI risks (CAD: RR = 0.92, 95%CI: 0.73–1.15, P = 0.445; MI: RR = 0.93, 95%CI: 0.84–1.03, P = 0.148). In conclusion, this meta-analysis provides strong evidence that ALDH2 rs671 polymorphism may be associated with increased risks of CAD and MI. However, further studies are still needed to accurately determine whether ADH genetic polymorphisms are associated with susceptibility to CAD and MI.  相似文献   
865.
MicroRNAs (miRNAs) are small RNA molecules (~ 20–30 nucleotides) that generally act in gene silencing and translational repression through the RNA interference pathway. They generally originate from intergenic genomic regions, but some are found in genomic regions that have been characterized such as introns, exons, and transposable elements (TE). To identify the miRNAs that are derived from palindromic MERs, we analyzed MER paralogs in human genome. The structures of the palindromic MERs were similar to the hairpin structure of miRNA in humans. Three miRNAs derived from MER96 located on chromosome 3, and MER91C paralogs located on chromosome 8 and chromosome 17 were identified in HeLa, HCT116, and HEK293 cell lines. The interactions between these MER-derived miRNAs and AGO1, AGO2, and AGO3 proteins were validated by immunoprecipitation assays. The data suggest that miRNAs derived from transposable elements could widely affect various target genes in the human genome.  相似文献   
866.

Background

The value of genotyping to predict variant phenotypes in patients with phenylalanine hydroxylase (Pah) deficiency is a matter of debate. However, there exists no comprehensive population relationship study focused on the Han Chinese.

Methods

We analyzed genotype–phenotype correlation for 186 different genotypes in 338 unrelated Chinese patients harboring 109 different Pah mutations. Two systems were used in this process. The first was a phenotype prediction system based on arbitrary values (AV) attributed to each mutation. The second was a pair-wise correlation analysis. The observed phenotype for AV analysis was the corresponding metabolic phenotype stratified according to the pretreatment phenylalanine (Phe) value.

Results

We found that the observed phenotype matched the predicted phenotype in 54.41% of 272 patients for whom AV information was available; the highest degree of concordance (61.83%) was found in patients with null/null genotypes, whereas the lowest “concordance rate” (32.69%) was observed for patients with expected mild-PKU phenotype. There are repeated inconsistencies for such mutations as R241C, R243Q, R261Q, V388M, V399V, R408Q, A434D and EX6-96A>G which are associated with variable phenotypes in patients with identical genotype. Significant correlations were disclosed between pretreatment Phe values and predicted residual activity (r = − 0.45643, P < 0.0001) or AV sum (r = − 0.59523, P < 0.0001).

Conclusion

Our study supports the notion that the Pah mutation genotype is the main determinant of metabolic phenotype in most patients in a particular population, and provided novel insights into the values that underpin the subsequent treatment and the prognosis of PKU in Chinese.  相似文献   
867.
Type IV secretion (T4S) systems are able to transport DNAs and/or proteins through the membranes of bacteria. They form large multiprotein complexes consisting of 12 proteins termed VirB1‐11 and VirD4. VirB7, 9 and 10 assemble into a 1.07 MegaDalton membrane‐spanning core complex (CC), around which all other components assemble. This complex is made of two parts, the O‐layer inserted in the outer membrane and the I‐layer inserted in the inner membrane. While the structure of the O‐layer has been solved by X‐ray crystallography, there is no detailed structural information on the I‐layer. Using high‐resolution cryo‐electron microscopy and molecular modelling combined with biochemical approaches, we determined the I‐layer structure and located its various components in the electron density. Our results provide new structural insights on the CC, from which the essential features of T4S system mechanisms can be derived.  相似文献   
868.
869.
870.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号