首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21292篇
  免费   1667篇
  国内免费   1193篇
  2024年   34篇
  2023年   226篇
  2022年   526篇
  2021年   1016篇
  2020年   659篇
  2019年   806篇
  2018年   904篇
  2017年   618篇
  2016年   933篇
  2015年   1300篇
  2014年   1448篇
  2013年   1631篇
  2012年   1959篇
  2011年   1740篇
  2010年   1067篇
  2009年   934篇
  2008年   1165篇
  2007年   1008篇
  2006年   892篇
  2005年   785篇
  2004年   625篇
  2003年   590篇
  2002年   519篇
  2001年   390篇
  2000年   327篇
  1999年   330篇
  1998年   195篇
  1997年   158篇
  1996年   120篇
  1995年   123篇
  1994年   86篇
  1993年   79篇
  1992年   108篇
  1991年   111篇
  1990年   105篇
  1989年   77篇
  1988年   59篇
  1987年   62篇
  1986年   44篇
  1985年   47篇
  1984年   27篇
  1983年   26篇
  1982年   22篇
  1981年   17篇
  1979年   32篇
  1978年   25篇
  1977年   27篇
  1976年   20篇
  1975年   23篇
  1972年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Fibronectin (FN) isoform expression is altered during chondrocyte commitment and maturation, with cartilage favoring expression of FN isoforms that includes the type II repeat extra domain B (EDB) but excludes extra domain A (EDA). We and others have hypothesized that the regulated splicing of FN mRNAs is necessary for the progression of chondrogenesis. To test this, we treated the pre-chondrogenic cell line ATDC5 with transforming growth factor-beta1, which has been shown to modulate expression of the EDA and EDB exons, as well as the late markers of chondrocyte maturation; it also slightly accelerates the early acquisition of a sulfated proteoglycan matrix without affecting cell proliferation. When chondrocytes are treated with TGF-beta1, the EDA exon is preferentially excluded at all times whereas the EDB exon is relatively depleted at early times. This regulated alternative splicing of FN correlates with the regulation of alternative splicing of SRp40, a splicing factor facilitating inclusion of the EDA exon. To determine if overexpression of the SRp40 isoforms altered FN and FN EDA organization, cDNAs encoding these isoforms were overexpressed in ATDC5 cells. Overexpression of the long-form of SRp40 yielded an FN organization similar to TGF-beta1 treatment; whereas overexpression of the short form of SRp40 (which facilitates EDA inclusion) increased formation of long-thick FN fibrils. Therefore, we conclude that the effects of TGF-beta1 on FN splicing during chondrogenesis may be largely dependent on its effect on SRp40 isoform expression.  相似文献   
993.
994.
Lee NG  Hong YK  Yu SY  Han SY  Geum D  Cho KS 《FEBS letters》2007,581(14):2625-2632
XNP/ATRX, a causative gene of X-linked alpha-thalassemia/mental retardation syndrome, encodes an SNF2 family ATPase/helicase protein. To better understand the role of XNP/ATRX in development, we isolated and characterized a Drosophila XNP/ATRX homolog, dXNP, which contains highly conserved SNF2 and helicase domains. Ectopically expressed dXNP induced strong apoptosis in the developing eye and wing, but did not affect cell cycle progression or the expression of wingless and engrailed, essential regulators of development. The dXNP-induced apoptosis was strongly suppressed by DJNKK/hemipterous mutation, and dXNP increased JNK activity. Taken together, these results suggest that dXNP regulates apoptosis via JNK activation.  相似文献   
995.
996.
Focal adhesion kinase (FAK) mediates signal transduction in response to multiple extracellular inputs via tyrosine phosphorylation at specific residues. Although several tyrosine phosphorylation events have been linked to FAK activation and downstream signal transduction, the function of FAK phosphorylation at Tyr(407) was previously unknown. Here, we show for the first time that phosphorylation of FAK Tyr(407) increases during serum starvation, contact inhibition, and cell cycle arrest, all conditions under which activating FAK Tyr(397) phosphorylation decreases. Transfection of NIH3T3 cells with a phosphorylation-mimicking FAK 407E mutant decreased autophosphorylation at Tyr(397) and inhibited both FAK kinase activity in vitro and FAK-mediated functions such as cell adhesion, spreading, proliferation, and migration. The opposite effects were observed in cells transfected with nonphosphorylatable mutant FAK 407F. Taken together, these data suggest the novel concept that FAK Tyr(407) phosphorylation negatively regulates the enzymatic and biological activities of FAK.  相似文献   
997.
Han B Y  Han B H 《农业工程》2007,27(11):4485-4490
Electrophysiological and behavioral responses of the wingless tea aphid, Toxoptera aurantii (Boyer), to 14 synthetic volatiles identified from tea shoots, their partial (GLV mixture) and full (ACB mixture) blends, and fresh young tea leaves, buds, tender stems, adult tea leaves and tea aphid-damaged young leaves (ADYL) were studied by using an electroantennography (EAG) and a four-arm olfactometer. ACB elicited the largest EAG responses. Major volatile components, Z-3-hexen-1-ol, E-2-hexenal, n-hexanol, methyl salicylate and benzylalcohol, from the tea shoots were strongly EAG active. All the 4 tested tea shoot tissues also elicited significant EAG responses, with the young tea leaves being the strongest, followed by buds, tender stems and adult tea leaves. Surprisingly, ADYL elicited a weakly negative EAG response. In the olfactory assays, the fresh and tender tea leaves, as well as the individual major volatile components, e.g. Z-3-hexenyl acetate, methyl salicylate, E-2-hexen-1-ol and Z-3-hexen-1-ol, from the tender shoots (EAG-active) were all attractive. This result might indicate that the wingless tea aphids may use tea shoot volatiles as kairomone to find their optimal feeding sites, e.g. fresh tender tea shoots.  相似文献   
998.
Panax japonicus is one of the important medicinal plants. Here, we established the protocol for plant regeneration of P. japonicus via direct somatic embryogenesis. Somatic embryos were directly obtained from the segments of zygotic embryos on MS medium with 4.4 μM 2,4-D. Thereafter, somatic embryos were produced by repetitive secondary somatic embryogenesis. The secondary somatic embryo formation was enhanced by plasmolyzing pretreatment (1.0 M mannitol for 10 h). Frequency of secondary somatic embryo formation from cotyledon segments was lowered by plasmolyzing pretreatment, but the number of somatic embryos per explants was greatly increased. Plasmolyzing pretreatment resulted in retardation of embryo growth and required subculture to fresh medium for further growth of embryos into cotyledonary stage. Without plasmolyzing pretreatment, cotyledonary embryos were obtained after 8 weeks of culture. All the cotyledonary somatic embryos germinated by 5 μM GA3 treatment, but only 15.3% were germinated on hormone-free medium. After 2 months of culture on 1/2 strength WPM medium, plantlets produced flowers spontaneously. In the anthers of in vitro flowers, microsporogenesis occurred normally with low number of pollen grains.  相似文献   
999.
Yang K  Zhao Z  Gross RW  Han X 《PloS one》2007,2(12):e1368

Background

Ether phospholipids are abundant membrane constituents present in electrically active tissues (e.g., heart and the brain) that play important roles in cellular function. Alterations of ether phospholipid molecular species contents are associated with a number of genetic disorders and human diseases.

Methodology/Principal Findings

Herein, the power of shotgun lipidomics, in combination with high mass accuracy/high resolution mass spectrometry, was explored to identify a paired rule for the presence of isomeric ether phospholipid molecular species in cellular lipidomes. The rule predicts that if an ether phospholipid A′-B is present in a lipidome, its isomeric counterpart B′-A is also present (where the ′ represents an ether linkage). The biochemical basis of this rule results from the fact that the enzymes which participate in either the sequential oxidation of aliphatic alcohols to fatty acids, or the reduction of long chain fatty acids to aliphatic alcohols (metabolic precursors of ether lipid synthesis), are not entirely selective with respect to acyl chain length or degree of unsaturation. Moreover, the enzymatic selectivity for the incorporation of different aliphatic chains into the obligatory precursor of ether lipids (i.e., 1-O-alkyl-glycero-3-phosphate) is also limited.

Conclusions/Significance

This intrinsic amplification of the number of lipid molecular species present in biological membranes predicted by this rule and demonstrated in this study greatly expands the number of ether lipid molecular species present in cellular lipidomes. Application of this rule to mass spectrometric analyses provides predictive clues to the presence of specific molecular species and greatly expands the number of identifiable and quantifiable ether lipid species present in biological samples. Through appropriate alterations in the database, use of the paired rule increases the number of identifiable metabolites in metabolic networks, thereby facilitating identification of biomarkers presaging disease states.  相似文献   
1000.
Qu J  Liu GH  Wu K  Han P  Wang P  Li J  Zhang X  Chen C 《PloS one》2007,2(10):e1085
Small ubiquitin-related protein modifiers (SUMO) modification is an important mechanism for posttranslational regulation of protein function. However, it is largely unknown how the sumoylation pathway is regulated. Here, we report that nitric oxide (NO) causes global hyposumoylation in mammalian cells. Both SUMO E2 conjugating enzyme Ubc9 and E3 ligase protein inhibitor of activated STAT3 (Pias3) were targets for S-nitrosation. S-nitrosation did not interfere with the SUMO conjugating activity of Ubc9, but promoted Pias3 degradation by facilitating its interaction with tripartite motif-containing 32 (Trim32), a ubiquitin E3 ligase. On the one hand, NO promoted Trim32-mediated Pias3 ubiquitination. On the other hand, NO enhanced the stimulatory effect of Pias3 on Trim32 autoubiquitination. The residue Cys459 of Pias3 was identified as a target site for S-nitrosation. Mutation of Cys459 abolished the stimulatory effect of NO on the Pias3-Trim32 interaction, indicating a requirement of S-nitrosation at Cys459 for positive regulation of the Pias3-Trim32 interplay. This study reveals a novel crosstalk between S-nitrosation, ubiquitination, and sumoylation, which may be crucial for NO-related physiological and pathological processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号