首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72247篇
  免费   6020篇
  国内免费   1102篇
  2023年   357篇
  2022年   649篇
  2021年   1826篇
  2020年   1113篇
  2019年   1417篇
  2018年   1883篇
  2017年   1373篇
  2016年   2307篇
  2015年   3559篇
  2014年   3979篇
  2013年   4628篇
  2012年   5860篇
  2011年   5465篇
  2010年   3462篇
  2009年   3051篇
  2008年   4217篇
  2007年   3865篇
  2006年   3496篇
  2005年   3145篇
  2004年   2951篇
  2003年   2667篇
  2002年   2279篇
  2001年   1953篇
  2000年   1781篇
  1999年   1474篇
  1998年   692篇
  1997年   592篇
  1996年   503篇
  1995年   498篇
  1994年   377篇
  1993年   365篇
  1992年   731篇
  1991年   607篇
  1990年   560篇
  1989年   544篇
  1988年   459篇
  1987年   441篇
  1986年   356篇
  1985年   372篇
  1984年   291篇
  1983年   247篇
  1982年   210篇
  1981年   175篇
  1980年   167篇
  1979年   240篇
  1978年   213篇
  1977年   198篇
  1976年   185篇
  1974年   206篇
  1972年   170篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
Abstract: There is increasing, although largely indirect, evidence that neurotrophic factors not only function as target-derived survival factors for projection neurons, but also act locally to regulate developmental processes. We studied the expression of ciliary neurotrophic factor (CNTF) and the CNTF-specific ligand-binding α-subunit of the CNTF receptor complex (CNTFRα) in the rat retina, a well-defined CNS model system, and CNTF effects on cultured retinal neurons. Both CNTF and CNTFRα (mRNA and protein) are expressed during phases of retinal neurogenesis and differentiation. Retina-specific Müller glia are immunocytochemically identified as the site of CNTF production and CNTFRα-expressing, distinct neuronal cell types as potential CNTF targets. Biological effects on corresponding neurons in culture further support the conclusion that locally supplied CNTF plays a regulatory role in the development of various retinal cell types including ganglion cells and interneurons.  相似文献   
982.
Human immunodeficiency virus type 1 (HIV-1) requires both CD4 and a coreceptor to infect cells. Macrophage-tropic (M-tropic) HIV-1 strains utilize the chemokine receptor CCR5 in conjunction with CD4 to infect cells, while T-cell-tropic (T-tropic) strains generally utilize CXCR4 as a coreceptor. Some viruses can use both CCR5 and CXCR4 for virus entry (i.e., are dual-tropic), while other chemokine receptors can be used by a subset of virus strains. Due to the genetic diversity of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) and the potential for chemokine receptors other than CCR5 or CXCR4 to influence viral pathogenesis, we tested a panel of 28 HIV-1, HIV-2, and SIV envelope (Env) proteins for the ability to utilize chemokine receptors, orphan receptors, and herpesvirus-encoded chemokine receptor homologs by membrane fusion and virus infection assays. While all Env proteins used either CCR5 or CXCR4 or both, several also used CCR3. Use of CCR3 was strongly dependent on its surface expression levels, with a larger number of viral Env proteins being able to utilize this coreceptor at the higher levels of surface expression. ChemR1, an orphan receptor recently shown to bind the CC chemokine I309 (and therefore renamed CCR8), was expressed in monocyte and lymphocyte cell populations and functioned as a coreceptor for diverse HIV-1, HIV-2, and SIV Env proteins. Use of ChemR1/CCR8 by SIV strains was dependent in part on V3 loop sequences. The orphan receptor V28 supported Env-mediated cell-cell fusion by four T- or dual-tropic HIV-1 and HIV-2 strains. Three additional orphan receptors failed to function for any of the 28 Env proteins tested. Likewise, five of six seven-transmembrane-domain receptors encoded by herpesviruses did not support Env-mediated membrane fusion. However, the chemokine receptor US28, encoded by cytomegalovirus, did support inefficient infection by two HIV-1 strains. These findings indicate that additional chemokine receptors can function as HIV and SIV coreceptors and that surface expression levels can strongly influence coreceptor use.  相似文献   
983.
Two genetically similar variants of coxsackievirus B4, CB4-P and CB4-V, cause distinct disease syndromes in mice. A multidisciplinary approach was used to examine the events occurring in situ. The CB4-P variant induced acute pancreatitis, followed by repair of the exocrine tissues, while the CB4-V variant induced chronic pancreatitis, characterized by extensive destruction of the exocrine tissues. Since CB4-V replicated more efficiently than CB4-P in vivo, the more extensive tissue injury associated with CB4-V infection could be explained as the result of a higher level of viral replication. However, the fact that CB4-V replicated more efficiently in a mouse strain that survives infection than in a strain that succumbs to infection suggests that immune-mediated mechanisms as well as viral cytolysis may contribute to pancreatic tissue injury. To address the role of the immune system in virus-induced pancreatitis, the cell types within the inflammatory infiltrate were analyzed by flow cytometry. B cells (34 to 75%) were the most abundant, followed by T cells (10 to 30%), natural killer cells (4 to 8%), and macrophages (0 to 6%). Recruitment (and perhaps proliferation) of B and T cells to the pancreatic tissues was influenced by viral strain. Differential recruitment of T and B cells may reflect altered antigenic sites between CB4-P and CB4-V. The viral sequence that affected T- and B-cell recruitment was identified as a threonine residue at position 129 of the VP1 capsid protein.  相似文献   
984.
Kinetics of cell death and the production of dissolved organic carbon (DOC) were investigated in Anabaena flos-aquae (Lyngb.) Bréb grown on three different N sources (N2nitrate, and ammonium) in a phosphorus (P)-limited chemostat. The fraction of live cells in the total population increased as growth rate increased with decreasing P limitation. Cell death was less in nitrate and ammonium media than in N2. The specific death rate (γ), when calculated as the slope ofv?1x vs. D?1, where vxand D are live cell fraction (or cell viability) and dilution rate, respectively, was 0. 0082 day?1 in N2and 0.0042 day?1 in nitrate. The slope of the plot in ammonium culture was not significant; however, the value of the live cell fraction was within the range for the NO?3culture. The fraction of live vegetative cells in N2 culture was constant at all growth rates and the increase in the overall live cell fraction with growth rate was due entirely to an increase in live heterocysts. Live heterocysts comprised 3.5% of the total cells at a growth rate of 0.25 day?1 and increased to 6.3% at 0.75 day?1 with the ratio of live heterocysts to live vegetative cells linearly increasing with growth rate. The fraction of live vegetative cells was invariant in nitrate cultures us in N2cultures. The live heterocysts fraction also increased with growth rate in nitrate cultures, along with the live heterocysts : live vegetative cells ratio, but the level was lower than in N2cultures. DOC released from dead cells increased inversely with growth rate in N2from 36.4% of the total DOC at a growth rate of 0.75 day?1 to 54.15% at 0.25 day?1. The contribution of cell death to the total DOC production in nitrate and ammonium media was significantly less than that under N2DOC from dead cells consisted mainly of high-molecular-weight compounds, whereas DOC excreted from live cells was largely of low molecular weight.  相似文献   
985.
Herpesvirus saimiri strain 11 of subgroup A contains a gene called the saimiri transformation-associated protein, STP, which is not required for viral replication but is required for in vitro immortalization and for the lymphoma-inducing capacity of the virus. To assess the effects of sequence variation on STP function, STP genes from six subgroup A isolates were cloned and sequenced. Sequence comparisons revealed extensive amino acid substitutions within the central region, but the acidic amino terminus and the hydrophobic carboxyl terminus were well conserved. Amino acid identities varied from 73 to 99% among all two-way comparisons. The highly conserved YAEV/I motif at amino acid residues 115 to 118 was preceded by negatively charged glutamic acid residues and thus matched very well the consensus sequence for binding to SH2 domains of src family kinases. The STPs of these subgroup A strains were shown to associate with cellular src and to be an in vitro substrate for src kinase. Mutational analysis of STP-A11 showed that binding to src kinase required the tyrosine residue at 115, showing that YAEV/I is a likely binding motif for src. Also, tyrosine phosphorylation of STP-A11 by src led to subsequent binding to lck and fyn in vitro. Thus, the association of STP with src is likely to be important for T-cell transformation by subgroup A strains of herpesvirus saimiri.  相似文献   
986.
Highly conserved amino acids in the second helix structure of the human immunodeficiency virus type 1 (HIV-1) MA protein were identified to be critical for the incorporation of viral Env proteins into HIV-1 virions from transfected COS-7 cells. The effects of these MA mutations on viral replication in the HIV-1 natural target cells, CD4+ T lymphocytes, were evaluated by using a newly developed system. In CD4+ T lymphocytes, mutations in the MA domain of HIV-1 Gag also inhibited the incorporation of viral Env proteins into mature HIV-1 virions. Furthermore, mutations in the MA domain of HIV-1 Gag reduced surface expression of viral Env proteins in CD4+ T lymphocytes. The synthesis of gp160 and cleavage of gp160 to gp120 were not significantly affected by MA mutations. On the other hand, the stability of gp120 in MA mutant-infected cells was significantly reduced compared to that in the parental wild-type virus-infected cells. These results suggest that functional interaction between HIV-1 Gag and Env proteins is not only critical for efficient incorporation of Env proteins into mature virions but also important for proper intracellular transport and stable surface expression of viral Env proteins in infected CD4+ T lymphocytes. A single amino acid substitution in MA abolished virus infectivity in dividing CD4+ T lymphocytes without significantly affecting virus assembly, virus release, or incorporation of Gag-Pol and Env proteins, suggesting that in addition to its functional role in virus assembly, the MA protein of HIV-1 also plays an important role in other steps of virus replication.  相似文献   
987.
M Carleton  H Lee  M Mulvey    D T Brown 《Journal of virology》1997,71(2):1558-1566
Sindbis virus envelope assembly is a multistep process resulting in the maturation of a rigid, highly ordered T=4 icosahedral protein lattice containing 80 spikes composed of trimers of E1-E2 heterodimers. Intramolecular disulfide bonds within E1 stabilize E1-E1 associations required for envelope formation and maintenance of the envelope's structural integrity. The structural integrity of the envelope protein lattice is resistant to reduction by dithiothreitol (DTT), indicating that E1 disulfides which stabilize structural domains become inaccessible to DTT at some point during virus maturation. The development of E1 resistance to DTT occurs prior to the completion of E1 folding and is temporally correlated with spike assembly in the endoplasmic reticulum. From these data we have predicted that in the final stages of spike assembly, E1 intramolecular disulfides, which stabilize the structural integrity of the envelope protein lattice, are buried within the spike and become inaccessible to the reductive activity of DTT. The spike is formed prior to the completion of E1 folding, and we have suggested that PE2 (the precursor to E2) may play a critical role in E1 folding after PE2-E1 oligomer formation has occurred. In this study we have investigated the role of PE2 in E1 folding, oligomer formation, and development of E1 resistance to both protease digestion and reduction by DTT by using a Sindbis virus replicon (SINrep/E1) which allows for the expression of E1 in the presence of truncated PE2. Through pulse-chase analysis of both Sindbis virus- and SINrep/E1-infected cells, we have determined that the folding of E1 into a trypsin-resistant conformation and into its most compact and stable form is not dependent upon association of E1 with PE2. However, E1 association with PE2 is required for oligomer formation, the export of E1 from the endoplasmic reticulum, and E1 acquisition of resistance to DTT.  相似文献   
988.
The entry of human immunodeficiency virus type 1 (HIV-1) into cells is initiated by binding of the viral glycoprotein gp120-gp41 to its cellular receptor CD4. The gp120-CD4 complex formed at the cell surface undergoes conformational changes that may allow its association with an additional membrane component(s) and the eventual formation of the fusion complex. These conformational rearrangements are accompanied by immunological changes manifested by altered reactivity with monoclonal antibodies specific for the individual components and presentation of new epitopes unique to the postbinding complex. In order to analyze the structure and function of the gp120-CD4 complex, monoclonal antibodies were generated from splenocytes of BALB/c mice immunized with soluble CD4-gp120 (IIIB) molecules (J. M. Gershoni, G. Denisova, D. Raviv, N. I. Smorodinsky, and D. Buyaner, FASEB J. 7:1185-1187 1993). One of those monoclonal antibodies, CG10, was found to be strictly complex specific. Here we demonstrate that this monoclonal antibody can significantly enhance the fusion of CD4+ cells with effector cells expressing multiple HIV-1 envelopes. Both T-cell-line-tropic and macrophage-tropic envelope-mediated cell fusion were enhanced, albeit at different optimal doses. Furthermore, infection of HeLa CD4+ (MAGI) cells by HIV-1 LAI, ELI1, and ELI2 strains was increased two- to fourfold in the presence of CG10 monoclonal antibodies, suggesting an effect on viral entry. These findings indicate the existence of a novel, conserved CD4-gp120 intermediate structure that plays an important role in HIV-1 cell fusion.  相似文献   
989.
The humoral and CD4+ cellular immune responses in mice following genetic immunization with three retroviral vectors encoding different forms of hepatitis B virus core antigen (HBcAg) and e antigen (HBeAg) were analyzed. The retroviral vectors induced expression of intracellular HBcAg (HBc[3A4]), secreted HBeAg (HBe[5A2]), or an intracellular HBcAg-neomycin phosphoryltransferase fusion protein (HBc-NEO[6A3]). Specific antibody levels and immunoglobulin G isotype restriction were highly dependent on both the host major histocompatibility complex and the transferred gene. Humoral and CD4+ cellular HBcAg and/or HBeAg (HBc/eAg)-specific immune responses following retroviral vector immunization were of a lower magnitude but followed the same characteristics compared with those after immunization with HBc/eAg in adjuvant. Two factors influenced the humoral responses. First, in vivo depletion of CD8+ cells in HBc-NEO[6A3]-immunized H-2k mice abrogated both HBcAg-specific antibodies and in vitro-detectable cytotoxic T lymphocytes. Second, priming of H-2b mice with an HBc/eAg-derived T-helper (Th) peptide in adjuvant prior to retroviral vector immunization greatly enhanced the HBc/eAg-specific humoral responses to all three vectors, suggesting that insufficient HBc/eAg-specific CD4+ Th-cell priming limits the humoral responses. In conclusion, direct injection of retroviral vectors seems to be effective in priming HBc/eAg-specific CD8+ but comparatively inefficient in priming CD4+ Th cells and subsequently specific antibodies. However, the limited HBc/eAg-specific CD4+ cell priming can effectively be circumvented by prior administration of a recombinant or synthetic form of HBc/eAg in adjuvant.  相似文献   
990.
抗白粉病小麦染色体组型的分子标记与生化标记分析   总被引:1,自引:0,他引:1  
张胜雯  王二明 《遗传学报》1997,24(6):524-530
应用与小麦第六同源群有关的分子和生化标记,包括DNA探针pSc5·3H3和pSR167以及同工酶Est-5和a-Amy-1,对来自六倍体小黑麦Beagle与普通小麦科冬58杂交后代F1花粉植株的抗白粉病株系M24.M09及M17进行了分析。结果表明,M24、M09及M17不同程度地含有黑麦染色体成分,而且电泳谱带差别较大,据此推断,M09为6RL的易位系。因此,生化和分子标记不仅可以用于确定外源片段的存在,而且可以帮助确定染色体组型和外源片段的位置  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号