首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19394篇
  免费   1489篇
  国内免费   1092篇
  21975篇
  2024年   53篇
  2023年   226篇
  2022年   578篇
  2021年   906篇
  2020年   601篇
  2019年   738篇
  2018年   826篇
  2017年   548篇
  2016年   846篇
  2015年   1153篇
  2014年   1311篇
  2013年   1465篇
  2012年   1772篇
  2011年   1556篇
  2010年   964篇
  2009年   847篇
  2008年   1067篇
  2007年   933篇
  2006年   822篇
  2005年   731篇
  2004年   584篇
  2003年   548篇
  2002年   472篇
  2001年   360篇
  2000年   295篇
  1999年   290篇
  1998年   182篇
  1997年   138篇
  1996年   106篇
  1995年   111篇
  1994年   78篇
  1993年   70篇
  1992年   96篇
  1991年   96篇
  1990年   88篇
  1989年   68篇
  1988年   56篇
  1987年   53篇
  1986年   39篇
  1985年   45篇
  1984年   24篇
  1983年   24篇
  1982年   21篇
  1981年   13篇
  1979年   20篇
  1978年   16篇
  1977年   19篇
  1976年   15篇
  1975年   14篇
  1972年   15篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
81.
Mitochondria as dynamic organelles undergo morphological changes through the processes of fission and fusion which are major factors regulating their functions. A disruption in the balance of mitochondrial dynamics induces functional disorders in mitochondria such as failed energy production and the generation of reactive oxygen species, which are closely related to pathophysiological changes associated with Alzheimer’s disease (AD). Recent studies have demonstrated a relationship between abnormalities in mitochondrial dynamics and impaired mitochondrial function, clarifying the effects of morphofunctional aberrations which promote neuronal cell death in AD. Several possible signaling pathways have been suggested for a better understanding of the mechanism behind the key molecules regulating mitochondrial morphologies. However, the exact machinery involved in mitochondrial dynamics still has yet to be elucidated. This paper reviews the current knowledge on signaling mechanisms involved in mitochondrial dynamics and the significance of mitochondrial dynamics in controlling associated functions in neurodegenerative diseases, particularly in AD.  相似文献   
82.
Protein pattern has played an important role in biosensors, bioMEMS, tissue engineering, fundamental studies of cell biology, and basic proteomics research. Here, we developed a straightforward and effective protein patterning technique using macroporous poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel micropatterns as a three-dimensional (3D) template for protein immobilization. Micropatterns of macroporous hydrogels with inverse opal structures were prepared on poly(ethylene glycol) (PEG)-coated silicon substrates by combining a colloidal crystal templating method with photopatterning. The resultant inverse opal hydrogel (IOH) micropatterns were modified with 3-aminopropyltriethoxysilane using the hydroxyl groups in PHEMA for the covalent immobilization of proteins. Proteins were selectively immobilized only on the hydrogel micropatterns, while the PEG regions served as an effective barrier to protein adsorption. Because of their highly ordered and interconnected 3D macroporous structures and large internal surface areas, protein loading in the IOH micropattern was about six times greater than that on a non-porous hydrogel micropattern, which consequently improved the protein activity. The porosity of the hydrogel micropatterns could be controlled using different sizes of colloidal nanoparticles, and using smaller nanoparticles produced hydrogel micropatterns with higher protein loading capacities and activities. To demonstrate the potential use of IOH micropatterns in biosensor systems, biotin was micropatterned on the hydrogels and the specific binding of streptavidin was successfully assayed using IOH micropatterns with better fluorescence signals and sensitivity than that of the corresponding non-porous hydrogel micropatterns.  相似文献   
83.
84.
Indigenous Fe- and S-metabolizing bacteria play important roles both in the formation and the natural attenuation of acid mine drainage (AMD). Due to its low pH and Fe-S-rich waters, a river located in the Dabaoshan Mine area provides an ideal opportunity to study indigenous Fe- and S-metabolizing microbial communities and their roles in biogeochemical Fe and S cycling. In this work, water and sediment samples were collected from the river for physicochemical, mineralogical, and microbiological analyses. Illumina MiSeq sequencing indicated higher species richness in the sediment than in the water. Sequencing also found that Fe- and S-metabolizing bacteria were the dominant microorganisms in the heavily and moderately contaminated areas. Fe- and S-metabolizing bacteria found in the water were aerobes or facultative anaerobes, including Acidithiobacillus, Acidiphilium, Thiomonas, Gallionella, and Leptospirillum. Fe- and S-metabolizing bacteria found in the sediment belong to microaerobes, facultative anaerobes, or obligatory anaerobes, including Acidithiobacillus, Sulfobacillus, Thiomonas, Gallionella, Geobacter, Geothrix, and Clostridium. Among the dominant genera in the sediment, Geobacter and Geothrix were rarely detected in AMD-contaminated natural environments. Canonical correspondence analysis indicated that pH, S, and Fe concentration gradients were the most important factors in structuring the river microbial community. Moreover, a scheme explaining the biogeochemical Fe and S cycling is advanced in light of the Fe and S species distribution and the identified Fe- and S-metabolizing bacteria.  相似文献   
85.
To investigate the occurrence and species diversity of mycobacteria in waters, surface water samples were collected monthly from the Han River and tap water samples at the terminal sites of the distribution system. Mycobacteria in each water sample were isolated by decontamination using cetylpyridinium chloride (CPC) and cultivation on Middlebrook 7H10 agar, and then identified by polymerase chain reaction-restriction fragment length polymorphism analysis (PRA) and sequencing of the 65-kDa heat-shock protein gene (hsp65 gene). Mycobacteria were detected in 59% of the surface water samples and 26% of the tap water samples. Over half of the 158 isolates could not be identified by hsp65 PRA and gene sequencing, and several identification discrepancies were observed between the two methods. The most frequently isolated species was Mycobacterium gordonae in surface water and M. lentiflavum in tap water. M. avium complex (MAC), the most important pathogen among environmental mycobacteria, was detected in the surface water samples but not found in the tap water samples. The result demonstrated that water is an important environmental source of mycobacteria and the combined application of hsp65 PRA and sequencing was more reliable than hsp65 PRA alone to accurately identify mycobacteria present in water.  相似文献   
86.
干细胞是指一群具有自我更新和多向分化潜能的细胞,是最有治疗潜力的细胞资源,已成为再生医学领域的研究热点。目前,已有多种干细胞用于肝脏疾病的治疗,能有效改善患者血清指标,减少并发症发生,并提高生活质量。这些干细胞在细胞来源、移植途径及治疗效果等多个方面各有特点,但其治疗肝脏疾病的机制尚不清楚。本文将对目前已用于肝病治疗的各种干细胞的临床应用以及可能的分子机制进展进行阐述。  相似文献   
87.
Ketogulonicigenium vulgare is characterized by the efficient production of 2KGA from L-sorbose. Ketogulonicigenium vulgare Y25 is known as a 2-keto-L-gulonic acid-producing strain in the vitamin C industry. Here we report the finished, annotated genome sequence of Ketogulonicigenium vulgare Y25.  相似文献   
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号