首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46562篇
  免费   3964篇
  国内免费   4921篇
  55447篇
  2024年   157篇
  2023年   648篇
  2022年   1482篇
  2021年   2415篇
  2020年   1663篇
  2019年   2076篇
  2018年   2048篇
  2017年   1474篇
  2016年   2021篇
  2015年   2915篇
  2014年   3493篇
  2013年   3732篇
  2012年   4533篇
  2011年   3971篇
  2010年   2546篇
  2009年   2329篇
  2008年   2657篇
  2007年   2390篇
  2006年   2043篇
  2005年   1827篇
  2004年   1450篇
  2003年   1339篇
  2002年   1121篇
  2001年   795篇
  2000年   647篇
  1999年   654篇
  1998年   427篇
  1997年   337篇
  1996年   294篇
  1995年   261篇
  1994年   205篇
  1993年   160篇
  1992年   191篇
  1991年   182篇
  1990年   156篇
  1989年   130篇
  1988年   110篇
  1987年   88篇
  1986年   73篇
  1985年   88篇
  1984年   36篇
  1983年   37篇
  1982年   33篇
  1981年   23篇
  1979年   22篇
  1978年   16篇
  1977年   21篇
  1976年   16篇
  1975年   14篇
  1972年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Cerebellum is involved in the motion coordination and working memory, to which the programming of sequential spikes at Purkinje cells is essential. It is not clear about the intrinsic mechanisms underlying spike capacity and timing precision as well as their postnatal maturation. We investigated the programming and intrinsic property of sequential spikes at Purkinje neurons during postnatal development by whole-cell recording in cerebellar slices. Cerebellar Purkinje neurons demonstrate the increasing of spike capacity and timing precision, as well as the lowering of refractory periods and threshold potentials during the postnatal maturation. In addition, the correlation between spike parameters and intrinsic properties converts to be more linear. This postnatal plasticity of neuronal intrinsic properties improves the timing precision and capacity of spike programming at cerebellar Purkinje neurons.  相似文献   
82.
83.
The spinocerebellar ataxias (SCAs) are a class of incurable diseases characterized by degeneration of the cerebellum that results in movement disorder. Recently, a new heritable form of SCA, spinocerebellar ataxia type 48 (SCA48), was attributed to dominant mutations in STIP1 homology and U box-containing 1 (STUB1); however, little is known about how these mutations cause SCA48. STUB1 encodes for the protein C terminus of Hsc70 interacting protein (CHIP), an E3 ubiquitin ligase. CHIP is known to regulate proteostasis by recruiting chaperones via a N-terminal tetratricopeptide repeat domain and recruiting E2 ubiquitin-conjugating enzymes via a C-terminal U-box domain. These interactions allow CHIP to mediate the ubiquitination of chaperone-bound, misfolded proteins to promote their degradation via the proteasome. Here we have identified a novel, de novo mutation in STUB1 in a patient with SCA48 encoding for an A52G point mutation in the tetratricopeptide repeat domain of CHIP. Utilizing an array of biophysical, biochemical, and cellular assays, we demonstrate that the CHIPA52G point mutant retains E3-ligase activity but has decreased affinity for chaperones. We further show that this mutant decreases cellular fitness in response to certain cellular stressors and induces neurodegeneration in a transgenic Caenorhabditis elegans model of SCA48. Together, our data identify the A52G mutant as a cause of SCA48 and provide molecular insight into how mutations in STUB1 cause SCA48.  相似文献   
84.
The genomes of Vibrio cholerae O1 Matlab variant MJ-1236, Mozambique O1 El Tor variant B33, and altered O1 El Tor CIRS101 were sequenced. All three strains were found to belong to the phylocore group 1 clade of V. cholerae, which includes the 7th-pandemic O1 El Tor and serogroup O139 isolates, despite displaying certain characteristics of the classical biotype. All three strains were found to harbor a hybrid variant of CTXΦ and an integrative conjugative element (ICE), leading to their establishment as successful clinical clones and the displacement of prototypical O1 El Tor. The absence of strain- and group-specific genomic islands, some of which appear to be prophages and phage-like elements, seems to be the most likely factor in the recent establishment of dominance of V. cholerae CIRS101 over the other two hybrid strains.Vibrio cholerae, a bacterium autochthonous to the aquatic environment, is the causative agent of cholera, a life-threatening disease that causes severe, watery diarrhea. Cholera bacteria are serogrouped based on their somatic O antigens, with more than 200 serogroups identified to date (6). Only toxigenic strains of serogroups O1 and O139 have been identified as agents of cholera epidemics and pandemics; serogroups other than O1 and O139 have the potential to cause mild gastroenteritis or, rarely, local outbreaks. Genes coding for cholera toxin (CTX), ctxAB, and other virulence factors have been shown to reside in bacteriophages and various mobile genetic elements. In addition, V. cholerae serogroup O1 is differentiated into two biotypes, classical and El Tor, by a combination of biochemical traits, by sensitivity to biotype-specific bacteriophages, and more recently by nucleotide sequencing of specific genes and by molecular typing (5, 17, 19).There have been seven pandemics of cholera recorded throughout human history. The seventh and current pandemic began in 1961 in the Indonesian island of Sulawesi and subsequently spread to Asia, Africa, and Latin America; the six previous pandemics are believed to have originated in the Indian subcontinent. Isolates of the sixth pandemic were almost exclusively of the O1 classical biotype, whereas the current (seventh) pandemic is dominated by the V. cholerae O1 El Tor biotype as the causative agent, a transition occurring between 1923 and 1961. Today, the disease continues to remain a scourge in developing countries, confounded by the fact that V. cholerae is native to estuaries and river systems throughout the world (8).Over the past 20 years, several new epidemic lineages of V. cholerae O1 El Tor have emerged (or reemerged). For example, in 1992, a new serogroup, namely, O139 of V. cholerae, was identified as the cause of epidemic cholera in India and Bangladesh (25). The initial concern was that a new pandemic was beginning; however, the geographic range of V. cholerae O139 is currently restricted to Asia. Additionally, V. cholerae O1 hybrids and altered El Tor variants have been isolated repeatedly in Bangladesh (Matlab) (23, 24) and Mozambique (1). Altered V. cholerae O1 El Tor isolates produce cholera toxin of the classical biotype but can be biotyped as El Tor by conventional phenotypic assays, whereas V. cholerae O1 hybrid variants cannot be biotyped based on phenotypic tests and can produce cholera toxin of either biotype. These new variants have subsequently replaced the prototype seventh-pandemic V. cholerae O1 El Tor strains in Asia and Africa, with respect to frequency of isolation from clinical cases of cholera (27).Here, we report the genome sequence of three V. cholerae O1 variants, MJ-1236, a Matlab type I hybrid variant from Bangladesh that cannot be biotyped by conventional methods, CIRS101, an altered O1 El Tor isolate from Bangladesh which harbors ctxB of classical origin, and B33, an altered O1 El Tor isolate from Mozambique which harbors classical CTXΦ, and we compare their genomes with prototype El Tor and classical genomes. From an epidemiological viewpoint, among the three variants characterized in this study, V. cholerae CIRS101 is currently the most “successful” in that strains belonging to this type have virtually replaced the prototype El Tor in Asia and many parts of Africa, notably East Africa. This study, therefore, gives us a unique opportunity to understand why V. cholerae CIRS101 is currently the most successful El Tor variant.  相似文献   
85.
In this study, we have demonstrated that the critical hydrogen bonding motif of the established 3-aminopyrazinone thrombin inhibitors can be effectively mimicked by a 2-aminopyridine N-oxide. As this peptidomimetic core is more resistant toward oxidative metabolism, it also overcomes the metabolic liability associated with the pyrazinones. An optimization study of the P(1) benzylamide delivered the potent thrombin inhibitor 21 (K(i) = 3.2 nM, 2xaPTT = 360 nM), which exhibited good plasma levels and half-life after oral dosing in the dog (C(max) = 2.6 microM, t(1/2) = 4.5 h).  相似文献   
86.
Although superhydrophobic materials have attracted much research interest in anti-icing,some controversy still exists.In this research,we report a cost-effective method used to verify the contribution of area fraction to ice adhesion strength.We tried to partially-embed siliea nanopnarticles into microscale fabrics of a commercial polyamide mesh.Then,the area fraction could be determined by altering the mesh size.Generally,the ice adhesion strength decreases as the area fraction decreases.An ice adhesion strength of~1.9 kPa and a delayed freezing time of~1048 s can be obtained.We attribute the low ice adhesion strength to the combination of superhydro-phobicity and stress concentration.The superhydrophobicity prohibits the water from penetrating into the voids of the meshes,and the small actual contact area leads to stress concentration which promotes interfacial crack propagation.Moreover,our superhydrophobic mesh simultaneously exhibis a micro-nano hierarchical structure and a partally-cmbedded structure.Therefore,the as-prepared superhydrophobic mesh retained the ieephobicity after 20 icingldeicing cycles,and maintained its superhydrophobicity even afier 60 sandpaper-abrasion cycles and a 220"C thermal treatment.  相似文献   
87.
Some properties of the β-N-acetyl-D-hexosaminidase purified from intercellular fluid of tomato leaves after the plant was systematically infected by TMV (tobacco mosaic virus) were studied. When pNP β-D-GlcNAc (p nitrophenyl-N-aeetyl β-D-glucosaminide) or pNP β-D- GalNAc (p-nitrophenyl-N-acetyl-β-D galactosaminide) was used as the substrate, it showed the optical pH between 4. 8--5.0 and optical temperature between 44— 47℃. Studies of thermostabillty indicated that the enzyme had a biphasic denaturation curve. Using pNP-β-D-GIcNAc or pNP-β-D GalNAc as the substrate, the Km value of the enzyme was 0. 36 and 0. 67 mmol/L respectively. N acetyi-D glucosamine and N acetyl-D-galactosamine were competitive inhibitors of the enzyme activities. Ag+ and Hg2+ were sensitive inhibitors and Fe2+ . Fe3+ and Cu2+ were also inhibitors enzyme activities.  相似文献   
88.
Kamal  Osama M.  Shah  Sayyed Hamad Ahmad  Li  Yan  Hou  Xilin  Li  Ying 《Molecular biology reports》2020,47(9):6887-6897
Molecular Biology Reports - The objective of the present work was the selection of cultivar, suitable medium and explant type for callus, root production, ascorbic acid, total ascorbic acid,...  相似文献   
89.
Tan spot, caused by Pyrenophora tritici-repentis, is a foliar disease of wheat, and it can inflict serious reduction in grain yield and quality. The bread wheat variety Ernie was found to be immune to this disease in Australia, and its genetic control was investigated by quantitative trait loci (QTL) analysis using a doubled haploid population. Eight QTL were identified in this population from three independent trials, and four of them were derived from the parent Ernie. The most significant QTL was located on chromosome arm 2BS, explaining 38.2, 29.8 and 36.2% of the phenotypic variance, respectively, in these trials. The effects of the 2BS QTL were further validated in four additional populations. The presence of this single QTL reduced disease severity by between 29.2 and 67.1% with an average of 50.5%. The significant effects of this QTL and its consistent detection across all the trials with different genetic backgrounds make it an ideal target for breeding programmes as well as for its further characterization. Data from this study also showed that neither plant height nor heading date significantly affects tan spot resistance.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号