全文获取类型
收费全文 | 119556篇 |
免费 | 2514篇 |
国内免费 | 3400篇 |
专业分类
125470篇 |
出版年
2024年 | 94篇 |
2023年 | 383篇 |
2022年 | 864篇 |
2021年 | 1392篇 |
2020年 | 958篇 |
2019年 | 1189篇 |
2018年 | 12810篇 |
2017年 | 11281篇 |
2016年 | 8545篇 |
2015年 | 2365篇 |
2014年 | 2266篇 |
2013年 | 2441篇 |
2012年 | 6768篇 |
2011年 | 14948篇 |
2010年 | 13301篇 |
2009年 | 9429篇 |
2008年 | 11265篇 |
2007年 | 12657篇 |
2006年 | 1461篇 |
2005年 | 1576篇 |
2004年 | 1848篇 |
2003年 | 1816篇 |
2002年 | 1444篇 |
2001年 | 705篇 |
2000年 | 560篇 |
1999年 | 406篇 |
1998年 | 257篇 |
1997年 | 239篇 |
1996年 | 173篇 |
1995年 | 157篇 |
1994年 | 119篇 |
1993年 | 119篇 |
1992年 | 131篇 |
1991年 | 139篇 |
1990年 | 105篇 |
1989年 | 81篇 |
1988年 | 80篇 |
1987年 | 74篇 |
1986年 | 40篇 |
1985年 | 51篇 |
1984年 | 35篇 |
1983年 | 43篇 |
1982年 | 35篇 |
1979年 | 23篇 |
1977年 | 19篇 |
1976年 | 17篇 |
1975年 | 23篇 |
1972年 | 262篇 |
1971年 | 280篇 |
1962年 | 28篇 |
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
91.
92.
We studied the action mechanism of lycoricidinol, a plant growthinhibitor isolated from Lycoris radiata Herb. Lycoricidinolinhibited protein synthesis in mung bean hypocotyls, but notRNA synthesis. Protein synthesis in Escherichia coli was notaffected by the inhibitor. Results of in vitro translation experimentswith the wheat germ system and the E. coli system indicatedthat lycoricidinol inhibited only eukaryotic but not prokaryotictranslation. Use of specific inhibitors of initiation and polypeptidechain elongation of polypeptide synthesis revealed that chainelongation was inhibited by lycoricidinol.
1Permanent address: Department of Biology, Yonsei University,Seoul 120, Korea. (Received September 30, 1983; Accepted December 28, 1983) 相似文献
93.
The crystal structure of cholestanyl n-octanoate (caprylate) (C35H62O2) is monoclinic with space group A2 and cell dimensions a = 10.103(7), b = 7.646(7), c = 87.63(7) A, beta = 90.51(6) degrees; Z = 8 [two molecules (A, B) in asymmetric unit], V = 6769 A3, Dc = 1.010 g cm-3. Integrated X-ray intensities for 3798 reflections with I greater than 2 sigma (I) were measured with a rotating anode diffractometer at room temperature. The structure was determined using direct methods. Block diagonal least squares refinement gave R = 0.111. Molecules A and B have almost fully extended conformations, but differ significantly in the rotation about the ester bond and in the C17 chains. The molecular packing in the crystal structure of cholestanyl caprylate consists of stacked bilayers each having d002 = 43.8 A in thickness and within each bilayer, cholestanols pack with cholestanols and caprylate chains pack with caprylate chains. The crystal structure is very similar to that of cholesteryl myristate but is quite different from that of cholesteryl caprylate. The phase equilibria of the cholestanyl caprylate/cholesteryl caprylate binary system have been shown to involve limited mutual solubility of the two components and to have a eutectic point at 73% cholestanyl caprylate. The cholesteric mesophase is monotropic at all compositions except for a narrow range near the eutectic point where it is enantiotropic. 相似文献
94.
95.
Perin L. Donnini M. Diomede L. Romano M. Tacconi M. T. Luisetti M. Salmona M. 《Cytotechnology》1991,7(1):25-32
An expression vector for G-CSF, pASLB3-3, was constructed and introduced into Namalwa KJM-1 cells (Hosoi et al., 1988), and cells resistant to 100 nM of methotrexate (MTX) were obtained. Among them, the highest producer, clone SC57, was selected and the productivity of this clone was further characterized. The maximal production of G-CSF was at the most 1.8 g/ml/day using a 25 cm2 tissue culture flask, even though the cell number was above 7×105 cells/ml. The limiting factors at high density were analyzed as the deficiency of nutrients, such as glucose, cysteine and serine, and pH control. The depression of specific G-CSF productivity per cell under the batch culture conditions was overcome by using a perfusion culture system, BiofermenterTM (Sato, 1983) with modifications of nutrients supplementation by a dialysis membrane and/or dissolved oxygen (DO) supplementation by microsilicone fibers. ITPSGF medium was modified to elevate concentrations of amino acids and glucose by 2.0- and 2.5-times, respectively. Under the control of pH at 7.4 and DO at 3 ppm, the specific G-CSF productivity was not depressed even at high cell density (above 1×107 cells/ml), and the amount of G-CSF reached 41 g/ml. These results indicated the possibility of finding the optimum culture conditions for the production of recombinant proteins by Namalwa KJM-1 cells.Abbreviations ABTS
2,2-Azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid
- BSA
Bovine Serum Albumin
- BSA-PBS
Phosphate-buffered Saline without Ca2+ and Mg2+ containing Bovine Serum Albumin
- dhfr
Dihydrofolate Reductase
- DO
Dissolved Oxygen
- G-CSF
Granulocyte Colony-stimulating Factor
- HEPES
4-(2-Hydroxyethyl)-1-piperazineethansulfonic Acid
- IFN
Interferon
- MTX
Methotrexate
- PBS(-)
Phosphate-buffered saline without Ca2+ and Mg2+
- Tween-PBS
Phosphate-buffered saline without Ca2+ and Mg2+ containing 0.05% of Tween 20 相似文献
96.
Enzyme I of the bacterial phosphoenolpyruvate:glycose phosphotransferase system (PTS) exhibits a temperature-dependent monomer/dimer equilibrium. The accompanying paper (Han, M. K., Roseman, S., and Brand, L. (1990) J. Biol. Chem. 265, 1985-1995) shows that the C-terminal -SH residue (Cys-575) can be modified specifically with fluorescent probes such as pyrene maleimide. The derivative retains full enzyme activity, and is capable of forming dimers at room temperature. In the present studies, Enzyme I labeled in this way is found to exhibit a temperature-, concentration-, and pH-dependent monomer/dimer association. The kinetics of dimer formation of Enzyme I is measured in the following way. A derivatized Enzyme I sample is prepared with a pyrene moiety irreversibly attached to the C-terminal -SH residue and 5,5'-dithiobis-2-nitrobenzoic acid reversibly attached to the other 3 -SH residues. This modified enzyme does not form dimers at room temperature. Addition of dithiothreitol results in total release of the thionitrobenzoate anion within 2 min. After the three -SH groups are unblocked, steady-state and nanosecond time-resolved emission anisotropy measurements indicate the dimer is formed over a period of 30 min. In a similar experiment, little dimer formation is observed at 3 degrees C, at temperature at which the native enzyme also does not form dimers. Tryptophan fluorescence is also examined during the release of the thionitrobenzoate. After the completion of thionitrobenzoate release, additional slow steady-state tryptophan fluorescence changes are observed. These results suggest that dimer formation may be preceded by a conformational change following thionitrobenzoate release. 相似文献
97.
Guno Haskå 《Microbial ecology》1975,1(1):234-245
Myxobacteria presumably produce extracellular bacteriolytic enzymes when they are growing in soil. In order to study their ecological significance, adsorption experiments were performed with lytic enzymes produced byMyxococcus virescens in casitone media. Different soils as well as montmorillonite and kaolinite can rapidly adsorb the bacteriolytic but not the proteolytic enzymes. About 1 gm of montmorillonite per liter of cell-free culture solution is enough for the adsorption of 97% of the bacteriolytic enzymes. The adsorption per unit weight is about 100 times greater on montmorillonite than on kaolinite. About 40% of the adsorbed enzymes can be eluted with solutions of high pH or high ionic strength. The only desorbed bacteriolytic enzyme is the alanyl-∈-N-lysine endopeptidase. 相似文献
98.
Jiaming Tian Bingxin Dai Li Gong Pingping Wang Han Ding Siwei Xia Weice Sun Cuiping Ren Jijia Shen Miao Liu 《PLoS neglected tropical diseases》2022,16(8)
Schistosomiasis is a serious and widespread parasitic disease caused by infection with Schistosoma. Because the parasite’s eggs are primarily responsible for schistosomiasis dissemination and pathogenesis, inhibiting egg production is a potential approach to control the spread and severity of the disease. The bromodomain and extra-terminal (BET) proteins represent promising targets for the development of epigenetic drugs against Schistosoma. JQ-1 is a selective inhibitor of the BET protein family. In the present study, JQ-1 was applied to S. japonicum in vitro. By using laser confocal scanning microscopy and EdU incorporation assays, we showed that application of JQ-1 to worms in vitro affected egg laying and the development of both the male and female reproductive systems. JQ-1 also inhibited the expression of the reproductive-related genes SjPlk1 and SjNanos1 in S. japonicum. Mice infected with S. japonicum were treated with JQ-1 during egg granuloma formation. JQ-1 treatment significantly reduced the size of the liver granulomas and levels of serum alanine aminotransferase and aspartate aminotransferase in mice and suppressed both egg laying and the development of male and female S. japonicum reproductive systems in vivo. Moreover, the mRNA expression levels of some proinflammatory cytokines were decreased in the parasites. Our findings suggest that JQ-1 treatment attenuates S. japonicum egg–induced hepatic granuloma due at least in part to suppressing the development of the reproductive system and egg production of S. japonicum. These findings further suggest that JQ-1 or other BET inhibitors warrant additional study as a new approach for the treatment or prevention of schistosomiasis. 相似文献
99.
Weixiao Lei Zefu Wang Man Cao Hui Zhu Min Wang Yi Zou Yunchun Han Dandan Wang Zeyu Zheng Ying Li Bingbing Liu Dafu Ru 《DNA research》2022,29(3)
Sophora japonica is a medium-size deciduous tree belonging to Leguminosae family and famous for its high ecological, economic and medicinal value. Here, we reveal a draft genome of S. japonica, which was ∼511.49 Mb long (contig N50 size of 17.34 Mb) based on Illumina, Nanopore and Hi-C data. We reliably assembled 110 contigs into 14 chromosomes, representing 91.62% of the total genome, with an improved N50 size of 31.32 Mb based on Hi-C data. Further investigation identified 271.76 Mb (53.13%) of repetitive sequences and 31,000 protein-coding genes, of which 30,721 (99.1%) were functionally annotated. Phylogenetic analysis indicates that S. japonica separated from Arabidopsis thaliana and Glycine max ∼107.53 and 61.24 million years ago, respectively. We detected evidence of species-specific and common-legume whole-genome duplication events in S. japonica. We further found that multiple TF families (e.g. BBX and PAL) have expanded in S. japonica, which might have led to its enhanced tolerance to abiotic stress. In addition, S. japonica harbours more genes involved in the lignin and cellulose biosynthesis pathways than the other two species. Finally, population genomic analyses revealed no obvious differentiation among geographical groups and the effective population size continuously declined since 2 Ma. Our genomic data provide a powerful comparative framework to study the adaptation, evolution and active ingredients biosynthesis in S. japonica. More importantly, our high-quality S. japonica genome is important for elucidating the biosynthesis of its main bioactive components, and improving its production and/or processing. 相似文献
100.
Qiang Lv Shuang Han Lei Wang Jinchan Xia Peng Li Ruoyang Hu Jinzheng Wang Lei Gao Yuli Chen Yu Wang Jing Du Fang Bao Yong Hu Xingzhi Xu Wei Xiao Yikun He 《Nucleic acids research》2022,50(12):6820
Nitric oxide (NO) is a key player in numerous physiological processes. Excessive NO induces DNA damage, but how plants respond to this damage remains unclear. We screened and identified an Arabidopsis NO hypersensitive mutant and found it to be allelic to TEBICHI/POLQ, encoding DNA polymerase θ. The teb mutant plants were preferentially sensitive to NO- and its derivative peroxynitrite-induced DNA damage and subsequent double-strand breaks (DSBs). Inactivation of TEB caused the accumulation of spontaneous DSBs largely attributed to endogenous NO and was synergistic to DSB repair pathway mutations with respect to growth. These effects were manifested in the presence of NO-inducing agents and relieved by NO scavengers. NO induced G2/M cell cycle arrest in the teb mutant, indicative of stalled replication forks. Genetic analyses indicate that Polθ is required for translesion DNA synthesis across NO-induced lesions, but not oxidation-induced lesions. Whole-genome sequencing revealed that Polθ bypasses NO-induced base adducts in an error-free manner and generates mutations characteristic of Polθ-mediated end joining. Our experimental data collectively suggests that Polθ plays dual roles in protecting plants from NO-induced DNA damage. Since Polθ is conserved in higher eukaryotes, mammalian Polθ may also be required for balancing NO physiological signaling and genotoxicity. 相似文献