首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   11篇
  2022年   2篇
  2021年   10篇
  2020年   4篇
  2019年   9篇
  2018年   7篇
  2017年   5篇
  2016年   8篇
  2015年   9篇
  2014年   5篇
  2013年   8篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   6篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1990年   1篇
  1980年   1篇
排序方式: 共有109条查询结果,搜索用时 93 毫秒
41.
The effects of osmolytes, including sucrose, sorbitol and proline on the remaining activity of firefly luciferase were measured. Heat inactivation studies showed that these osmolytes maintain the remaining activity of enzyme and increase activation energy of thermal unfolding reaction. Fluorescence and circular dichroism (CD) experiments showed changes in secondary and tertiary structure of firefly luciferase, in the presence of sucrose, sorbitol and proline. The unfolding curves of luciferase (obtained by far-UV CD spectra), indicated an irreversible thermal denaturation and raising of the midpoint of the unfolding transition temperature (T(m)) in the presence of osmolytes.  相似文献   
42.
43.
44.
Brucella abortus S19 and RB51 strains have been successfully used to control bovine brucellosis worldwide; however, currently, most of our understanding of the protective immune response induced by vaccination comes from studies in mice. The aim of this study was to characterize and compare the immune responses induced in cattle prime-immunized with B. abortus S19 or RB51 and revaccinated with RB51. Female calves, aged 4 to 8 months, were vaccinated with either vaccine S19 (0.6–1.2 x 1011 CFU) or RB51 (1.3 x 1010 CFU) on day 0, and revaccinated with RB51 (1.3 x 1010 CFU) on day 365 of the experiment. Characterization of the immune response was performed using serum and peripheral blood mononuclear cells. Blood samples were collected on days 0, 28, 210, 365, 393 and 575 post-immunization. Results showed that S19 and RB51 vaccination induced an immune response characterized by proliferation of CD4+ and CD8+ T-cells; IFN-ɣ and IL-17A production by CD4+ T-cells; cytotoxic CD8+ T-cells; IL-6 secretion; CD4+ and CD8+ memory cells; antibodies of IgG1 class; and expression of the phenotypes of activation in T-cells. However, the immune response stimulated by S19 compared to RB51 showed higher persistency of IFN-ɣ and CD4+ memory cells, induction of CD21+ memory cells and higher secretion of IL-6. After RB51 revaccination, the immune response was chiefly characterized by increase in IFN-ɣ expression, proliferation of antigen-specific CD4+ and CD8+ T-cells, cytotoxic CD8+ T-cells and decrease of IL-6 production in both groups. Nevertheless, a different polarization of the immune response, CD4+- or CD8+-dominant, was observed after the booster with RB51 for S19 and RB51 prime-vaccinated animals, respectively. Our results indicate that after prime vaccination both vaccine strains induce a strong and complex Th1 immune response, although after RB51 revaccination the differences between immune profiles induced by prime-vaccination become accentuated.  相似文献   
45.
Endothelial nitric oxide synthase (eNOS), VEGF, and hypoxia-inducible factor 1-alpha (HIF-1alpha) are important regulators of endothelial function, which plays a role in the pathophysiology of heart failure (HF). PGE1 analog treatment in patients with HF elicits beneficial hemodynamic effects, but the precise mechanisms have not been investigated. We have investigated the effects of the PGE1 analog alprostadil on eNOS, VEGF, and HIF-1alpha expression in human umbilical vein endothelial cells (HUVEC) using RT-PCR and immunoblotting under normoxic and hypoxic conditions. In addition, we studied protein expression by immunohistochemical staining in explanted hearts from patients with end-stage HF, treated or untreated with systemic alprostadil. Alprostadil causes an upregulation of eNOS and VEGF protein and mRNA expression in HUVEC and decreases HIF-1alpha. Hypoxia potently increased eNOS, VEGF, and HIF-1alpha synthesis. The alprostadil-induced upregulation of eNOS and VEGF was prevented by inhibition of MAPKs with PD-98056 or U-0126. Consistently, the expression of eNOS and VEGF was increased, and HIF-1alpha was reduced in failing hearts treated with alprostadil. The potent effects of alprostadil on endothelial VEGF and eNOS synthesis may be useful for patients with HF where endothelial dysfunction is involved in the disease process.  相似文献   
46.
We assessed the molecular genetic diversity and relationships among some Aegilops and Triticum species using 15 start codon-targeted (SCoT) polymorphism markers. A total of 166 bands amplified, of which 164 (98.79%) were polymorphic. Analysis of molecular variance and inter-population differentiation (Gst) indicated high genetic variation within the studied populations. Our analyses revealed high genetic diversity in T. boeoticum, Ae. cylindrica, T. durum and Ae. umbellulata, low diversity in Ae. crassa, Ae. caudata and Ae. speltoides, and a close relationship among Ae. tauschii, T. aestivum, T. durum, T. urartu, and T. boeoticum. Cluster analysis indicated 180 individuals divided into 8 genome homogeneous clades and 11 sub-groups. T. aestivum and T. durum accessions were grouped together, and accessions with the C and U genomes were grouped into the same clade. Our results support the hypothesis that T. urartu and Ae. tauschii are two diploid ancestors of T. aestivum, and also that Ae. caudata and Ae. umbellulata are putative donors of C and U genomes for other Aegilops species that possess these genomes. Our results also revealed that the SCoT technique is informative and can be used to assess genetic relationships among wheat germplasm.  相似文献   
47.
48.
49.
Ubiquitin expression protein DNA clone (Hl-UBI) was isolated from Heterodera latipons collected from North Jordan. Its sequence of 285 nucleotides was also determined and deposited in the GeneBank. The 285-bp open reading frame coded for 76-amino acid protein having two domains; the ubiquitin domain and the C terminal extension. The first 59 amino acids were predicted with the ubiquitin domain with identity percentages of 78% to ubiquitin of H. schachtii, 77% to polyubiquitin of Globodera pallida, 74% to ubiquitin of Globodera rostochiensis and 72% to ubiquitin of Heterodera glycines. The other domain at the C-terminus, containing 17 amino acids, showed no homology to any known protein. Sequence analysis showed a calculated encoding amino acids molecular weight of 8.77 kDa, theoretical isoelectric point = 4.76, negatively charged residues = 12, positively charged residues = 9, extinction coefficient = 1490, estimated half-life = 30 h, instability index = 32.51 and grand average of hydropathicity = ?0.537. The demonstrated subcellular localization analysis of cytoplasm, cell nucleus, mitochondrion, cell skeleton and plasma membrane of Hl-UBI protein occupied about 52.20, 21.70, 17.40, 4.30 and 4.30%, respectively. Sequence, homology and structural analysis confirmed that Hl-UBI gene was highly conserved during evolution and belonged to ubiquitin gene family.  相似文献   
50.
We identified and functionally characterized genes encoding three Gα proteins and one Gβ protein in the dimorphic fungal wheat pathogen Mycosphaerella graminicola, which we designated MgGpa1, MgGpa2, MgGpa3, and MgGpb1, respectively. Sequence comparisons and phylogenetic analyses showed that MgGPA1 and MgGPA3 are most related to the mammalian Gαi and Gαs families, respectively, whereas MgGPA2 is not related to either of these families. On potato dextrose agar (PDA) and in yeast glucose broth (YGB), MgGpa1 mutants produced significantly longer spores than those of the wild type (WT), and these developed into unique fluffy mycelia in the latter medium, indicating that this gene negatively controls filamentation. MgGpa3 mutants showed more pronounced yeast-like growth accompanied with hampered filamentation and secreted a dark-brown pigment into YGB. Germ tubes emerging from spores of MgGpb1 mutants were wavy on water agar and showed a nested type of growth on PDA that was due to hampered filamentation, numerous cell fusions, and increased anastomosis. Intracellular cyclic AMP (cAMP) levels of MgGpb1 and MgGpa3 mutants were decreased, indicating that both genes positively regulate the cAMP pathway, which was confirmed because the WT phenotype was restored by adding cAMP to these mutant cultures. The cAMP levels in MgGpa1 mutants and the WT were not significantly different, suggesting that this gene might be dispensable for cAMP regulation. In planta assays showed that mutants of MgGpa1, MgGpa3, and MgGpb1 are strongly reduced in pathogenicity. We concluded that the heterotrimeric G proteins encoded by MgGpa3 and MgGpb1 regulate the cAMP pathway that is required for development and pathogenicity in M. graminicola.Signal transduction pathways are important for sensing and responding to different environmental stimuli in both lower and higher eukaryotes. The highly conserved heterotrimeric guanine nucleotide-binding proteins (G proteins) belong to a family of regulatory proteins that are crucial for the transduction of signals, which are perceived by a distinct family of cell surface receptors (4). Heterotrimeric G proteins contain three subunits (α, β, and γ) that are linked in the inactive state. Activation of a Gα subunit by a transmembrane receptor leads to exchange of bound GDP with GTP on the Gα subunit, resulting in dissociation of the Gα and the Gβγ dimeric subunits, which can now interact with downstream effectors that subsequently generate changes in cellular responses (for a review, see reference 10).Filamentous fungi have one Gβ- and usually three Gα-encoding genes that belong to three major groups. Encoded proteins in groups I and III are related to the mammalian Gαi and Gαs families, respectively, but group II fungal Gα proteins have no mammalian counterpart (1, 4, 14, 22, 33, 53). Interestingly, the corn smut fungus Ustilago maydis contains a unique fourth Gα-encoding gene, and Saccharomyces cerevisiae contains only two Gα proteins (10, 57). Irrespective of the observed numerical variation, Gα proteins regulate a variety of cellular and developmental responses (4). For plant-pathogenic fungi, Gβ-encoding genes have been characterized functionally (9, 14, 22, 27, 31, 48, 52). Apart from the fact that individual Gα-encoding genes and the Gβ-encoding gene have been demonstrated to regulate growth, reproduction, and virulence, comparative functional characterization of all Gα-encoding genes has been reported only for a few plant-pathogenic fungi, including Magnaporthe grisea, Cryphonectria parasitica, and U. maydis (5, 41, 57).Mycosphaerella graminicola (anamorph Septoria tritici) causes septoria tritici blotch disease in bread and durum wheat in areas with high rainfall during the growing season, particularly in Western Europe, where it is considered to be the most important wheat disease (30). It is a ubiquitous phytopathogen with a lifestyle completely different from that of the aforementioned plant-pathogenic fungi. It is a dimorphic pathogen, and therefore the transition from a yeast-like to a filamentous form is important for initiation of infection (45). M. graminicola does not form appressoria but penetrates the leaves through stomata without forming specific infection structures. Furthermore, as a hemibiotroph, it has a biotrophic phase of about 10 days that is followed by a rapid switch to necrotrophy. The necrotic foliar lesions bear anamorphic and teleomorphic fructifications. M. graminicola is the model fungus for the Mycosphaerellaceae and even for the order Dothideales, an extremely large and diverse class of fungi with over 1,000 named species, including major plant pathogens such as the banana leaf streak fungus Mycosphaerella fijiensis (12, 21). Large expressed sequence tag (EST) libraries and the recently released genome sequence have been instrumental for the identification and characterization of genes involved in the development and pathogenicity of M. graminicola (http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html). Recently, we reported that genes encoding mitogen-activated protein kinases (MAPKs) (MgFus3, MgSlt2, and MgHog1) and the catalytic (MgTpk2) and regulatory (MgBcy1) subunits of protein kinase A (PKA) are essential pathogenicity factors and regulate specific steps during the infection process (8, 43-45). To extend our knowledge about the role of G proteins in the development and pathogenicity of M. graminicola, we functionally analyzed three Gα-encoding genes and one Gβ-encoding gene of M. graminicola, which we designated MgGpa1, MgGpa2, MgGpa3, and MgGpb1, respectively. Our results show the requirement of MgGpa1, MgGpa3, and MgGpb1 for pathogenicity, whereas the latter also negatively regulates cell fusion and anastomosis. Among the G protein-encoding genes characterized in this study, MgGpa3 and MgGpb1 positively regulate the cyclic AMP (cAMP) pathway. MgGpa1 seems to be dispensable for cAMP regulation, whereas MgGpa2 appears to be redundant, for none of the assays rendered altered phenotypes. Our results open new perspectives for studying the regulatory machinery of the cAMP pathway in M. graminicola and other plant-pathogenic fungi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号