首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1007篇
  免费   106篇
  1113篇
  2024年   2篇
  2023年   12篇
  2022年   30篇
  2021年   59篇
  2020年   24篇
  2019年   26篇
  2018年   36篇
  2017年   34篇
  2016年   53篇
  2015年   97篇
  2014年   83篇
  2013年   95篇
  2012年   115篇
  2011年   102篇
  2010年   43篇
  2009年   35篇
  2008年   33篇
  2007年   53篇
  2006年   41篇
  2005年   29篇
  2004年   27篇
  2003年   23篇
  2002年   19篇
  2001年   5篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1931年   2篇
  1926年   1篇
  1915年   1篇
排序方式: 共有1113条查询结果,搜索用时 15 毫秒
31.
32.
Divergent natural selection regimes can contribute to adaptive population divergence, but can be sensitive to human‐mediated environmental change. Nutrient loading of aquatic ecosystems, for example, might modify selection pressures by altering the abundance and distribution of resources and the prevalence and infectivity of parasites. Here, we used a mesocosm experiment to test for interactive effects of nutrient loading and parasitism on host condition and feeding ecology. Specifically, we investigated whether the common fish parasite Gyrodactylus sp. differentially affected recently diverged lake and stream ecotypes of three‐spined stickleback (Gasterosteus aculeatus). We found that the stream ecotype had a higher resistance to Gyrodactylus sp. infections than the lake ecotype, and that both ecotypes experienced a cost of parasitism, indicated by negative relationships between parasite load and both stomach fullness and body condition. Overall, our results suggest that in the early stages of adaptive population divergence of hosts, parasites can affect host resistance, body condition and diet.  相似文献   
33.
Facing energy problems, there is a strong demand for new technologies dealing with the replacement of fossil fuels. The emerging fields of biotechnology, photobiotechnology and electrobiotechnology, offer solutions for the production of fuels, energy, or chemicals using renewable energy sources (light or electrical current e.g. produced by wind or solar power) or organic (waste) substrates. From an engineering point of view both technologies have analogies and some similar challenges, since both light and electron transfer are primarily surface‐dependent. In contrast to that, bioproduction processes are typically volume dependent. To allow large scale and industrially relevant applications of photobiotechnology and electrobiotechnology, this opinion first gives an overview over the current scales reached in these areas. We then try to point out the challenges and possible methods for the scale up or numbering up of the reactors used. It is shown that the field of photobiotechnology is by now much more advanced than electrobiotechnology and has achieved industrial applications in some cases. We argue that transferring knowledge from photobiotechnology to electrobiotechnology can speed up the development of the emerging field of electrobiotechnology. We believe that a combination of scale up and numbering up, as it has been shown for several photobiotechnological reactors, may well lead to industrially relevant scales in electrobiotechnological processes allowing an industrial application of the technology in near future.  相似文献   
34.
Autophagy is a degradative pathway in which cytosolic material is enwrapped within double membrane vesicles, so-called autophagosomes, and delivered to lytic organelles. SNARE (Soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins are key to drive membrane fusion of the autophagosome and the lytic organelles, called lysosomes in higher eukaryotes or vacuoles in plants and yeast. Therefore, the identification of functional SNARE complexes is central for understanding fusion processes and their regulation. The SNARE proteins Syntaxin 17, SNAP29 and Vamp7/VAMP8 are responsible for the fusion of autophagosomes with lysosomes in higher eukaryotes. Recent studies reported that the R-SNARE Ykt6 is an additional SNARE protein involved in autophagosome-lytic organelle fusion in yeast, Drosophila, and mammals. These current findings point to an evolutionarily conserved role of Ykt6 in autophagosome-related fusion events. Here, we briefly summarize the principal mechanisms of autophagosome-lytic organelle fusion, with a special focus on Ykt6 to highlight some intrinsic features of this unusual SNARE protein.  相似文献   
35.
36.
Vibrio cholerae is an aquatic bacterium with the potential to infect humans and cause the cholera disease. While most bacteria have single chromosomes, the V. cholerae genome is encoded on two replicons of different size. This study focuses on the DNA replication and cell division of this bi‐chromosomal bacterium during the stringent response induced by starvation stress. V. cholerae cells were found to initially shut DNA replication initiation down upon stringent response induction by the serine analog serine hydroxamate. Surprisingly, cells temporarily restart their DNA replication before finally reaching a state with fully replicated single chromosome sets. This division‐replication pattern is very different to that of the related single chromosome model bacterium Escherichia coli. Within the replication restart phase, both chromosomes of V. cholerae maintained their known order of replication timing to achieve termination synchrony. Using flow cytometry combined with mathematical modeling, we established that a phase of cellular regrowth be the reason for the observed restart of DNA replication after the initial shutdown. Our study shows that although the stringent response induction itself is widely conserved, bacteria developed different ways of how to react to the sensed nutrient limitation, potentially reflecting their individual lifestyle requirements.  相似文献   
37.
The selection of a nest site is crucial for successful reproduction of birds. Animals which re‐use or occupy nest sites constructed by other species often have limited choice. Little is known about the criteria of nest‐stealing species to choose suitable nesting sites and habitats. Here, we analyze breeding‐site selection of an obligatory “nest‐cleptoparasite”, the Amur Falcon Falco amurensis. We collected data on nest sites at Muraviovka Park in the Russian Far East, where the species breeds exclusively in nests of the Eurasian Magpie Pica pica. We sampled 117 Eurasian Magpie nests, 38 of which were occupied by Amur Falcons. Nest‐specific variables were assessed, and a recently developed habitat classification map was used to derive landscape metrics. We found that Amur Falcons chose a wide range of nesting sites, but significantly preferred nests with a domed roof. Breeding pairs of Eurasian Hobby Falco subbuteo and Eurasian Magpie were often found to breed near the nest in about the same distance as neighboring Amur Falcon pairs. Additionally, the occurrence of the species was positively associated with bare soil cover, forest cover, and shrub patches within their home range and negatively with the distance to wetlands. Areas of wetlands and fallow land might be used for foraging since Amur Falcons mostly depend on an insect diet. Additionally, we found that rarely burned habitats were preferred. Overall, the effect of landscape variables on the choice of actual nest sites appeared to be rather small. We used different classification methods to predict the probability of occurrence, of which the Random forest method showed the highest accuracy. The areas determined as suitable habitat showed a high concordance with the actual nest locations. We conclude that Amur Falcons prefer to occupy newly built (domed) nests to ensure high nest quality, as well as nests surrounded by available feeding habitats.  相似文献   
38.
Activity-dependent protein phosphorylation is a highly dynamic yet tightly regulated process essential for cellular signaling. Although recognized as critical for neuronal functions, the extent and stoichiometry of phosphorylation in brain cells remain undetermined. In this study, we resolved activity-dependent changes in phosphorylation stoichiometry at specific sites in distinct subcellular compartments of brain cells. Following highly sensitive phosphopeptide enrichment using immobilized metal affinity chromatography and mass spectrometry, we isolated and identified 974 unique phosphorylation sites on 499 proteins, many of which are novel. To further explore the significance of specific phosphorylation sites, we used isobaric peptide labels and determined the absolute quantity of both phosphorylated and non-phosphorylated peptides of candidate phosphoproteins and estimated phosphorylation stoichiometry. The analyses of phosphorylation dynamics using differentially stimulated synaptic terminal preparations revealed activity-dependent changes in phosphorylation stoichiometry of target proteins. Using this method, we were able to differentiate between distinct isoforms of Ca2+/calmodulin-dependent protein kinase (CaMKII) and identify a novel activity-regulated phosphorylation site on the glutamate receptor subunit GluR1. Together these data illustrate that mass spectrometry-based methods can be used to determine activity-dependent changes in phosphorylation stoichiometry on candidate phosphopeptides following large scale phosphoproteome analysis of brain tissue.  相似文献   
39.

We assessed the potential for microbial interactions influencing a well-documented host–pathogen system. Mycoplasma agassizii is the known etiological agent of upper respiratory tract disease in Mojave desert tortoises (Gopherus agassizii), but disease in wild animals is extremely heterogeneous. For example, a much larger proportion of animals harbor M. agassizii than those that develop disease. With the availability of a new quantitative PCR assay for a microbe that had previously been implicated in disease, Pasteurella testudinis, we tested 389 previously collected samples of nasal microbes from tortoise populations across the Mojave desert. We showed that P. testudinis is a common commensal microbe. However, we did find that its presence was associated with higher levels of M. agassizii among the tortoises positive for this pathogen. The best predictor of P. testudinis prevalence in tortoise populations was average size of tortoises, suggesting that older populations have higher levels of P. testudinis. The prevalence of co-infection in populations was associated with the prevalence of URTD, providing additional evidence for an indirect interaction between the two microbes and inflammatory disease. We showed that URTD, like many chronic, polymicrobial diseases involving mucosal surfaces, shows patterns of a polymicrobial etiology.

  相似文献   
40.
Osteopontin (OPN), encoded by SPP1, is a phosphorylated glycoprotein predominantly synthesized in kidney tissue. Increased OPN mRNA and protein expression correlates with proteinuria, reduced creatinine clearance, and kidney fibrosis in animal models of kidney disease. But its genetic underpinnings are incompletely understood. We therefore conducted a genome-wide association study (GWAS) of OPN in a European chronic kidney disease (CKD) population. Using data from participants of the German Chronic Kidney Disease (GCKD) study (N = 4,897), a GWAS (minor allele frequency [MAF]≥1%) and aggregated variant testing (AVT, MAF<1%) of ELISA-quantified serum OPN, adjusted for age, sex, estimated glomerular filtration rate (eGFR), and urinary albumin-to-creatinine ratio (UACR) was conducted. In the project, GCKD participants had a mean age of 60 years (SD 12), median eGFR of 46 mL/min/1.73m2 (p25: 37, p75: 57) and median UACR of 50 mg/g (p25: 9, p75: 383). GWAS revealed 3 loci (p<5.0E-08), two of which replicated in the population-based Young Finns Study (YFS) cohort (p<1.67E-03): rs10011284, upstream of SPP1 encoding the OPN protein and related to OPN production, and rs4253311, mapping into KLKB1 encoding prekallikrein (PK), which is processed to kallikrein (KAL) implicated through the kinin-kallikrein system (KKS) in blood pressure control, inflammation, blood coagulation, cancer, and cardiovascular disease. The SPP1 gene was also identified by AVT (p = 2.5E-8), comprising 7 splice-site and missense variants. Among others, downstream analyses revealed colocalization of the OPN association signal at SPP1 with expression in pancreas tissue, and at KLKB1 with various plasma proteins in trans, and with phenotypes (bone disorder, deep venous thrombosis) in human tissue. In summary, this GWAS of OPN levels revealed two replicated associations. The KLKB1 locus connects the function of OPN with PK, suggestive of possible further post-translation processing of OPN. Further studies are needed to elucidate the complex role of OPN within human (patho)physiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号