全文获取类型
收费全文 | 2160篇 |
免费 | 196篇 |
专业分类
2356篇 |
出版年
2024年 | 7篇 |
2023年 | 14篇 |
2022年 | 24篇 |
2021年 | 61篇 |
2020年 | 43篇 |
2019年 | 37篇 |
2018年 | 40篇 |
2017年 | 32篇 |
2016年 | 70篇 |
2015年 | 111篇 |
2014年 | 110篇 |
2013年 | 153篇 |
2012年 | 194篇 |
2011年 | 176篇 |
2010年 | 114篇 |
2009年 | 99篇 |
2008年 | 144篇 |
2007年 | 145篇 |
2006年 | 135篇 |
2005年 | 126篇 |
2004年 | 105篇 |
2003年 | 100篇 |
2002年 | 78篇 |
2001年 | 18篇 |
2000年 | 14篇 |
1999年 | 16篇 |
1998年 | 20篇 |
1997年 | 9篇 |
1996年 | 9篇 |
1995年 | 7篇 |
1994年 | 11篇 |
1993年 | 9篇 |
1992年 | 7篇 |
1991年 | 6篇 |
1990年 | 3篇 |
1988年 | 5篇 |
1987年 | 9篇 |
1986年 | 4篇 |
1985年 | 3篇 |
1984年 | 6篇 |
1983年 | 4篇 |
1982年 | 3篇 |
1981年 | 5篇 |
1975年 | 3篇 |
1971年 | 4篇 |
1967年 | 5篇 |
1965年 | 5篇 |
1964年 | 4篇 |
1962年 | 3篇 |
1954年 | 3篇 |
排序方式: 共有2356条查询结果,搜索用时 15 毫秒
951.
Le Zhang Kalavathi Dasuri Sun-Ok Fernandez-Kim Annadora J. Bruce-Keller Linnea R. Freeman Jennifer K. Pepping Tina L. Beckett M. Paul Murphy Jeffrey N. Keller 《生物化学与生物物理学报:疾病的分子基础》2013,1832(9):1456-1462
Cerebral amyloid angiopathy (CAA) occurs in nearly every individual with Alzheimer's disease (AD) and Down's syndrome, and is the second largest cause of intracerebral hemorrhage. Mouse models of CAA have demonstrated evidence for increased gliosis contributing to CAA pathology. Nearly two thirds of Americans are overweight or obese, with little known about the effects of obesity on the brain, although increasingly the vasculature appears to be a principle target of obesity effects on the brain. In the current study we describe for the first time whether diet induced obesity (DIO) modulates glial reactivity, amyloid levels, and inflammatory signaling in a mouse model of CAA. In these studies we identify surprisingly that DIO does not significantly increase Aβ levels, astrocyte (GFAP) or microglial (IBA-1) gliosis in the CAA mice. However, within the hippocampal gyri a localized increase in reactive microglia were increased in the CA1 and stratum oriens relative to CAA mice on a control diet. DIO was observed to selectively increase IL-6 in CAA mice, with IL-1β and TNF-α not increased in CAA mice in response to DIO. Taken together, these data show that prolonged DIO has only modest effects towards Aβ in a mouse model of CAA, but appears to elevate some localized microglial reactivity within the hippocampal gyri and selective markers of inflammatory signaling. These data are consistent with the majority of the existing literature in other models of Aβ pathology, which surprisingly show a mixed profile of DIO effects towards pathological processes in mouse models of neurodegenerative disease. The importance for considering the potential impact of ceiling effects in pathology within mouse models of Aβ pathogenesis, and the current experimental limitations for DIO in mice to fully replicate metabolic dysfunction present in human obesity, are discussed. This article is part of a Special Issue entitled: Animal Models of Disease. 相似文献
952.
Andrew R. Bader Tina Li Weiping Wang Daniel S. Kohane Joseph Loscalzo Ying-Yi Zhang 《Journal of visualized experiments : JoVE》2015,(95)
Chitosan (CS) and dextran sulfate (DS) are charged polysaccharides (glycans), which form polyelectrolyte complex-based nanoparticles when mixed under appropriate conditions. The glycan nanoparticles are useful carriers for protein factors, which facilitate the in vivo delivery of the proteins and sustain their retention in the targeted tissue. The glycan polyelectrolyte complexes are also ideal for protein delivery, as the incorporation is carried out in aqueous solution, which reduces the likelihood of inactivation of the proteins. Proteins with a heparin-binding site adhere to dextran sulfate readily, and are, in turn, stabilized by the binding. These particles are also less inflammatory and toxic when delivered in vivo. In the protocol described below, SDF-1α (Stromal cell-derived factor-1α), a stem cell homing factor, is first mixed and incubated with dextran sulfate. Chitosan is added to the mixture to form polyelectrolyte complexes, followed by zinc sulfate to stabilize the complexes with zinc bridges. The resultant SDF-1α-DS-CS particles are measured for size (diameter) and surface charge (zeta potential). The amount of the incorporated SDF-1α is determined, followed by measurements of its in vitro release rate and its chemotactic activity in a particle-bound form. 相似文献
953.
Schroeder ET Singh A Bhasin S Storer TW Azen C Davidson T Martinez C Sinha-Hikim I Jaque SV Terk M Sattler FR 《American journal of physiology. Endocrinology and metabolism》2003,284(1):E120-E128
To determine whether oxymetholone increases lean body mass (LBM) and skeletal muscle strength in older persons, 31 men 65-80 yr of age were randomized to placebo (group 1) or 50 mg (group 2) or 100 mg (group 3) daily for 12 wk. For the three groups, total LBM increased by 0.0 +/- 0.6, 3.3 +/- 1.2 (P < 0.001), and 4.2 +/- 2.4 kg (P < 0.001), respectively. Trunk fat decreased by 0.2 +/- 0.4, 1.7 +/- 1.0 (P = 0.018), and 2.2 +/- 0.9 kg (P = 0.005) in groups 1, 2, and 3, respectively. Relative increases in 1-repetition maximum (1-RM) strength for biaxial chest press of 8.2 +/- 9.2 and 13.9 +/- 8.1% in the two active treatment groups were significantly different from the change (-0.8 +/- 4.3%) for the placebo group (P < 0.03). For lat pull-down, 1-RM changed by -0.6 +/- 8.3, 8.8 +/- 15.1, and 18.4 +/- 21.0% for the groups, respectively (1-way ANOVA, P = 0.019). The pattern of changes among the groups for LBM and upper-body strength suggested that changes might be related to dose. Alanine aminotransferase increased by 72 +/- 67 U/l in group 3 (P < 0.001), and HDL-cholesterol decreased by -19 +/- 9 and -23 +/- 18 mg/dl in groups 2 and 3, respectively (P = 0.04 and P = 0.008). Thus oxymetholone improved LBM and maximal voluntary muscle strength and decreased fat mass in older men. 相似文献
954.
Paulo Vieira Tina Kyndt Godelieve Gheysen Janice de Almeida Engler 《Plant signaling & behavior》2013,8(6)
Root-knot and cyst nematodes are biotrophic parasites that invade the root apex of host plants and migrate toward the vascular cylinder where they cause the differentiation of root cells into galls (or root-knots) containing hypertrophied multinucleated giant-feeding cells, or syncytia, respectively. The precise molecular mechanisms that drive the formation of such unique nematode feeding sites are still far-off from being completely understood. The diverse gene expression changes occurring within the host cells suggest that both types of plant-parasitic nematodes modulate a variety of plant processes. Induction and repression of genes belonging to the host cell cycle control machinery have shown to be essential to drive the formation of such specialized nematode feeding cells. We demonstrate that nematodes usurp key components regulating the endocycle in their favor. This is illustrated by the involvement of anaphase-promoting complex (APC) genes (CCS52A and CCS52B), the endocycle repressor DP-E2F-like (E2F/DEL1) gene and the ROOT HAIRLESS 1 PROTEIN (RHL1), which is part of a multiprotein complex of the toposiomerase VI, in the proper formation of nematode feeding sites. Altering the expression of these genes in Arabidopsis plants by down- or overexpressing strategies strongly influences the extent of endoreduplication in both types of nematode feeding site leading to a disturbance of the nematode’s life cycle and reproduction. 相似文献
955.
Calcium overload of neural cell mitochondria plays a key role in excitotoxic and ischemic brain injury. This study tested the hypothesis that brain mitochondria consist of subpopulations with differential sensitivity to calcium-induced inner membrane permeability transition, and that this sensitivity is greatly reduced by physiological levels of adenine nucleotides. Isolated non-synaptosomal rat brain mitochondria were incubated in a potassium-based medium in the absence or presence of ATP or ADP. Measurements were made of medium and intramitochondrial free calcium, light scattering, mitochondrial ultrastructure, and the elemental composition of electron-opaque deposits within mitochondria treated with calcium. In the absence of adenine nucleotides, calcium induced a partial decrease in light scattering, accompanied by three distinct ultrastructural morphologies, including large-amplitude swelling, matrix vacuolization and a normal appearance. In the presence of ATP or ADP the mitochondrial calcium uptake capacity was greatly enhanced and calcium induced an increase rather than a decrease in mitochondrial light scattering. Approximately 10% of the mitochondria appeared damaged and the rest contained electron-dense precipitates that contained calcium, as determined by electron-energy loss spectroscopy. These results indicate that brain mitochondria are heterogeneous in their response to calcium. In the absence of adenine nucleotides, approximately 20% of the mitochondrial population exhibit morphological alterations consistent with activation of the permeability transition, but less than 10% exhibit evidence of osmotic swelling and membrane disruption in the presence of ATP or ADP. 相似文献
956.
Axelsson-Olsson D Waldenström J Broman T Olsen B Holmberg M 《Applied and environmental microbiology》2005,71(2):987-992
We showed by a laboratory experiment that four different Campylobacter jejuni strains are able to infect the protozoan Acanthamoeba polyphaga. C. jejuni cells survived for longer periods when cocultured with amoebae than when grown in culture alone. The infecting C. jejuni cells aggregated in amoebic vacuoles, in which they were seen to be actively moving. Furthermore, a resuscitation of bacterial cultures that were previously negative in culturability tests was observed after reinoculation into fresh amoeba cultures. After spontaneous rupture of the amoebae, C. jejuni could be detected by microscopy and culturability tests. Our results indicate that amoebae may serve as a nonvertebrate reservoir for C. jejuni in the environment. 相似文献
957.
Functional Analysis of Putative Adhesion Factors in Lactobacillus acidophilus NCFM 总被引:2,自引:0,他引:2
下载免费PDF全文
![点击此处可从《Applied microbiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
B. Logan Buck Eric Altermann Tina Svingerud Todd R. Klaenhammer 《Applied microbiology》2005,71(12):8344-8351
Lactobacilli are major inhabitants of the normal microflora of the gastrointestinal tract, and some select species have been used extensively as probiotic cultures. One potentially important property of these organisms is their ability to interact with epithelial cells in the intestinal tract, which may promote retention and host-bacterial communication. However, the mechanisms by which they attach to intestinal epithelial cells are unknown. The objective of this study was to investigate cell surface proteins in Lactobacillus acidophilus that may promote attachment to intestinal tissues. Using genome sequence data, predicted open reading frames were searched against known protein and protein motif databases to identify four proteins potentially involved in adhesion to epithelial cells. Homologous recombination was used to construct isogenic mutations in genes encoding a mucin-binding protein, a fibronectin-binding protein, a surface layer protein, and two streptococcal R28 homologs. The abilities of the mutants to adhere to intestinal epithelial cells were then evaluated in vitro. Each strain was screened on Caco-2 cells, which differentiate and express markers characteristic of normal small-intestine cells. A significant decrease in adhesion was observed in the fibronectin-binding protein mutant (76%) and the mucin-binding protein mutant (65%). A surface layer protein mutant also showed reduction in adhesion ability (84%), but the effect of this mutation is likely due to the loss of multiple surface proteins that may be embedded in the S-layer. This study demonstrated that multiple cell surface proteins in L. acidophilus NCFM can individually contribute to the organism's ability to attach to intestinal cells in vitro. 相似文献
958.
959.
Crustacea are known to develop different chromatic patterns due to many factors. Regarding decapods, chromatism was mainly studied in crabs, while very little is known about chromatic patterns in hermit crabs. Calcinus tubularis is a typical infralittoral rocky bottom hermit crab, studied for different aspects of its biology except chromatic variations. This paper aims at describing the different colour morphologies of C. tubularis, discussing hypothesis of why they develop, and testing if in nature the crab prefers a shell with a chromatic pattern similar to that of its body. One hundred and forty crabs were observed and filmed in the laboratory. They were subdivided into two groups, according to their chromatic pattern: 1) light and 2) dark crabs; the shells they occupied were also subdivided into the two groups of 1) light and 2) dark shells on the basis of the epibionts encrusting them. Observations of 129 crabs suggest that the colour depends neither on depth nor on size, intermoult period, diet, reproductive period but it might be connected to genetic factors and might help crab to camouflage. Camouflage is suggested by the fact that 79.3% of the total examined specimens occupy shells with a chromatic pattern resembling that of the crabs themselves. This phenomenon is significantly more recurrent in females than in males and could help the crabs to be cryptic, first with the occupied shell and secondly with the habitat (rocks encrusted by photophylous algae). 相似文献
960.
PpATG9 encodes a novel membrane protein that traffics to vacuolar membranes, which sequester peroxisomes during pexophagy in Pichia pastoris 总被引:1,自引:0,他引:1
下载免费PDF全文
![点击此处可从《Molecular biology of the cell》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Chang T Schroder LA Thomson JM Klocman AS Tomasini AJ Strømhaug PE Dunn WA 《Molecular biology of the cell》2005,16(10):4941-4953
When Pichia pastoris adapts from methanol to glucose growth, peroxisomes are rapidly sequestered and degraded within the vacuole by micropexophagy. During micropexophagy, sequestering membranes arise from the vacuole to engulf the peroxisomes. Fusion of the sequestering membranes and incorporation of the peroxisomes into the vacuole is mediated by the micropexophagy-specific membrane apparatus (MIPA). In this study, we show the P. pastoris ortholog of Atg9, a novel membrane protein is essential for the formation of the sequestering membranes and assembly of MIPA. During methanol growth, GFP-PpAtg9 localizes to multiple structures situated near the plasma membrane referred as the peripheral compartment (Atg9-PC). On glucose-induced micropexophagy, PpAtg9 traffics from the Atg9-PC to unique perivacuolar structures (PVS) that contain PpAtg11, but lack PpAtg2 and PpAtg8. Afterward, PpAtg9 distributes to the vacuole surface and sequestering membranes. Movement of the PpAtg9 from the Atg9-PC to the PVS requires PpAtg11 and PpVps15. PpAtg2 and PpAtg7 are essential for PpAtg9 trafficking from the PVS to the vacuole and sequestering membranes, whereas trafficking of PpAtg9 proceeds independent of PpAtg1, PpAtg18, and PpVac8. In summary, our data suggest that PpAtg9 transits from the Atg9-PC to the PVS and then to the sequestering membranes that engulf the peroxisomes for degradation. 相似文献