首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2162篇
  免费   194篇
  2356篇
  2024年   7篇
  2023年   14篇
  2022年   24篇
  2021年   61篇
  2020年   43篇
  2019年   37篇
  2018年   40篇
  2017年   32篇
  2016年   70篇
  2015年   111篇
  2014年   110篇
  2013年   153篇
  2012年   194篇
  2011年   176篇
  2010年   114篇
  2009年   99篇
  2008年   144篇
  2007年   145篇
  2006年   135篇
  2005年   126篇
  2004年   105篇
  2003年   100篇
  2002年   78篇
  2001年   18篇
  2000年   14篇
  1999年   16篇
  1998年   20篇
  1997年   9篇
  1996年   9篇
  1995年   7篇
  1994年   11篇
  1993年   9篇
  1992年   7篇
  1991年   6篇
  1990年   3篇
  1988年   5篇
  1987年   9篇
  1986年   4篇
  1985年   3篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1975年   3篇
  1971年   4篇
  1967年   5篇
  1965年   5篇
  1964年   4篇
  1962年   3篇
  1954年   3篇
排序方式: 共有2356条查询结果,搜索用时 15 毫秒
941.
The p16INK4A tumor suppressor gene is frequently disrupted by mutation or deletion in a wide range of cancer types, ranging from leukemia to cancers of the bladder, skin, lung, liver, and spleen. We have previously shown that deletion of at least one copy of the p16INK4A gene is associated with an increased risk of relapse in pediatric leukemia. Our data suggest that hemizygous p16INK4A deletion may be constitutional, conferring susceptibility to leukemia. Confirmation of this association is worthy of a larger study. Data from primary leukemia specimens are also presented here which examined the possibility that the remaining allele of the gene was inactivated by another mechanism such as mutation or was silenced by methylation. These possibilities were formally excluded in a case of hemizygous loss of the p16INK4A gene in leukemia, establishing that in this case the p16INK4A deletion was either semidominant or fully haploinsufficient for relapse susceptibility in this disease. Implementation of high throughput methods such as those used here for detecting hemizygous loss of tumor suppressor genes will become increasingly important for molecular diagnosis of cancer. This is particularly true for the emerging class of tumor suppressor genes where deletion of one allele is sufficient to confer cancer susceptibility or poor prognosis with standard treatment.  相似文献   
942.
943.
Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase), which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role of CDT as a virulence factor is not understood. Here we report by using time-lapse- and immunofluorescence microscopy that CDT and other binary actin-ADP-ribosylating toxins, including Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, induce redistribution of microtubules and formation of long (up to >150 µm) microtubule-based protrusions at the surface of intestinal epithelial cells. The toxins increase the length of decoration of microtubule plus-ends by EB1/3, CLIP-170 and CLIP-115 proteins and cause redistribution of the capture proteins CLASP2 and ACF7 from microtubules at the cell cortex into the cell interior. The CDT-induced microtubule protrusions form a dense meshwork at the cell surface, which wrap and embed bacterial cells, thereby largely increasing the adherence of Clostridia. The study describes a novel type of microtubule structure caused by less efficient microtubule capture and offers a new perspective for the pathogenetic role of CDT and other binary actin-ADP-ribosylating toxins in host–pathogen interactions.  相似文献   
944.
945.
Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer’s disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant “binding site barrier” effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.  相似文献   
946.
Hambuch TM  Parsch J 《Genetics》2005,170(4):1691-1700
The nonrandom use of synonymous codons (codon bias) is a well-established phenomenon in Drosophila. Recent reports suggest that levels of codon bias differ among genes that are differentially expressed between the sexes, with male-expressed genes showing less codon bias than female-expressed genes. To examine the relationship between sex-biased gene expression and level of codon bias on a genomic scale, we surveyed synonymous codon usage in 7276 D. melanogaster genes that were classified as male-, female-, or non-sex-biased in their expression in microarray experiments. We found that male-biased genes have significantly less codon bias than both female- and non-sex-biased genes. This pattern holds for both germline and somatically expressed genes. Furthermore, we find a significantly negative correlation between level of codon bias and degree of sex-biased expression for male-biased genes. In contrast, female-biased genes do not differ from non-sex-biased genes in their level of codon bias and show a significantly positive correlation between codon bias and degree of sex-biased expression. These observations cannot be explained by differences in chromosomal distribution, mutational processes, recombinational environment, gene length, or absolute expression level among genes of the different expression classes. We propose that the observed codon bias differences result from differences in selection at synonymous and/or linked nonsynonymous sites between genes with male- and female-biased expression.  相似文献   
947.

Background  

The potential causes for variation in virulence between distinct M. tuberculosis strains are still not fully known. However, differences in protein expression are probably an important factor. In this study we used a label-free quantitative proteomic approach to estimate differences in protein abundance between two closely related M. tuberculosis strains; the virulent H37Rv strain and its attenuated counterpart H37Ra.  相似文献   
948.
The geographical location and shape of Apulia, a narrow land stretching out in the sea at the South of Italy, made this region a Mediterranean crossroads connecting Western Europe and the Balkans. Such movements culminated at the beginning of the Iron Age with the Iapygian civilization which consisted of three cultures: Peucetians, Messapians, and Daunians. Among them, the Daunians left a peculiar cultural heritage, with one-of-a-kind stelae and pottery, but, despite the extensive archaeological literature, their origin has been lost to time. In order to shed light on this and to provide a genetic picture of Iron Age Southern Italy, we collected and sequenced human remains from three archaeological sites geographically located in Northern Apulia (the area historically inhabited by Daunians) and radiocarbon dated between 1157 and 275 calBCE. We find that Iron Age Apulian samples are still distant from the genetic variability of modern-day Apulians, they show a degree of genetic heterogeneity comparable with the cosmopolitan Republican and Imperial Roman civilization, even though a few kilometers and centuries separate them, and they are well inserted into the Iron Age Pan-Mediterranean genetic landscape. Our study provides for the first time a window on the genetic make-up of pre-Roman Apulia, whose increasing connectivity within the Mediterranean landscape, would have contributed to laying the foundation for modern genetic variability. In this light, the genetic profile of Daunians may be compatible with an at least partial autochthonous origin, with plausible contributions from the Balkan peninsula.  相似文献   
949.
950.
Thionins are antimicrobial peptides that are involved in plant defence. Here, we present an in‐depth analysis of the role of rice thionin genes in defence responses against two root pathogens: the root‐knot nematode Meloidogyne graminicola and the oomycete Pythium graminicola. The expression of rice thionin genes was observed to be differentially regulated by defence‐related hormones, whereas all analysed genes were consistently down‐regulated in M. graminicola‐induced galls, at least until 7 days post‐inoculation (dpi). Transgenic lines of Oryza sativa cv. Nipponbare overproducing OsTHI7 revealed decreased susceptibility to M. graminicola infection and P. graminicola colonization. Taken together, these results demonstrate the role of rice thionin genes in defence against two of the most damaging root pathogens attacking rice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号