首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2108篇
  免费   234篇
  2342篇
  2024年   4篇
  2023年   13篇
  2022年   24篇
  2021年   58篇
  2020年   40篇
  2019年   34篇
  2018年   40篇
  2017年   32篇
  2016年   69篇
  2015年   111篇
  2014年   110篇
  2013年   153篇
  2012年   194篇
  2011年   176篇
  2010年   114篇
  2009年   99篇
  2008年   144篇
  2007年   145篇
  2006年   135篇
  2005年   126篇
  2004年   105篇
  2003年   100篇
  2002年   78篇
  2001年   18篇
  2000年   14篇
  1999年   16篇
  1998年   20篇
  1997年   9篇
  1996年   9篇
  1995年   7篇
  1994年   11篇
  1993年   9篇
  1992年   7篇
  1991年   6篇
  1990年   3篇
  1988年   5篇
  1987年   9篇
  1986年   4篇
  1985年   3篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1975年   3篇
  1971年   4篇
  1967年   5篇
  1965年   5篇
  1964年   4篇
  1962年   3篇
  1954年   3篇
排序方式: 共有2342条查询结果,搜索用时 15 毫秒
151.
Ras GTPase Activating Protein SH3 Domain Binding Protein (G3BP) is a potential anti-cancer drug target implicated in several cellular functions. We have used protein crystallography to solve crystal structures of the human G3BP1 NTF2-like domain both alone and in complex with an FxFG Nup repeat peptide. Despite high structural similarity, the FxFG binding site is located between two alpha helices in the G3BP1 NTF2-like domain and not at the dimer interface as observed for nuclear transport factor 2. ITC studies showed specificity towards the FxFG motif but not FG and GLFG motifs. The unliganded form of the G3BP1 NTF2-like domain was solved in two crystal forms to resolutions of 1.6 and 3.3 Å in space groups P212121 and P6322 based on two different constructs, residues 1–139 and 11–139, respectively. Crystal packing of the N-terminal residues against a symmetry related molecule in the P212121 crystal form might indicate a novel ligand binding site that, however, remains to be validated. The crystal structures give insight into the nuclear transportation mechanisms of G3BP and provide a basis for future structure based drug design.  相似文献   
152.
Photosynthesis Research - The psbA gene family in cyanobacteria encodes different forms of the D1 protein that is part of the Photosystem II reaction centre. We have identified a phylogenetically...  相似文献   
153.
154.
Coral Reefs - Cumulative anthropogenic pressures have triggered a global decline in the health of marine ecosystems, and coral reefs, in particular, are in crisis. With climate and...  相似文献   
155.
Multiple sclerosis (MS), the most common disabling neurologic disease of young adults, is considered a classical T cell-mediated disease and is characterized by demyelination, axonal damage, and progressive neurological dysfunction. The currently available disease-modifying therapies are limited in their efficacy, and improved understanding of new pathways contributing to disease pathogenesis could reveal additional novel therapeutic targets. The p38 mitogen-activated protein kinase (MAPK) signaling pathway is known to be triggered by stress stimuli and to contribute to inflammatory responses. Importantly, a number of recent studies have identified this signaling pathway as a central player in MS and its principal animal model, experimental allergic encephalomyelitis. Here, we review the evidence from mouse and human studies supporting the role of p38 MAPK in regulating key immunopathogenic mechanisms underlying autoimmune inflammatory disease of the central nervous system and the potential of targeting this pathway as a disease-modifying therapy in MS.  相似文献   
156.
G protein coupled receptors play crucial roles in mediating cellular responses to external stimuli, and increasing evidence suggests that they function as multiple units comprising homo/heterodimers and hetero-oligomers. Adenosine and β-adrenergic receptors are co-expressed in numerous tissues and mediate important cellular responses to the autocoid adenosine and sympathetic stimulation, respectively. The present study was undertaken to examine whether adenosine A1ARs heterodimerize with β1- and/or β2-adrenergic receptors (β1R and β2R), and whether such interactions lead to functional consequences. Co-immunoprecipitation and co-localization studies with differentially epitope-tagged A1, β1, and β2 receptors transiently co-expressed in HEK-293 cells indicate that A1AR forms constitutive heterodimers with both β1R and β2R. This heterodimerization significantly influenced orthosteric ligand binding affinity of both β1R and β2R without altering ligand binding properties of A1AR. Receptor-mediated ERK1/2 phosphorylation significantly increased in cells expressing A1AR/β1R and A1AR/β2R heteromers. β-Receptor-mediated cAMP production was not altered in A1AR/β1R expressing cells, but was significantly reduced in the A1AR/β2R cells. The inhibitory effect of the A1AR on cAMP production was abrogated in both A1AR/β1R and A1AR/β2R expressing cells in response to the A1AR agonist CCPA. Co-immunoprecipitation studies conducted with human heart tissue lysates indicate that endogenous A1AR, β1R, and β2R also form heterodimers. Taken together, our data suggest that heterodimerization between A1 and β receptors leads to altered receptor pharmacology, functional coupling, and intracellular signaling pathways. Unique and differential receptor cross-talk between these two important receptor families may offer the opportunity to fine-tune crucial signaling responses and development of more specific therapeutic interventions.  相似文献   
157.
Summary

The occurrence of vitellogenin in adult haploid drones of the honeybee, Apis mellifica, was determined by sensitive immunotechniques, i.e. two-dimensional Immunoelectrophoresis and SDS-PAGE immunoblotting using a monospecific anti-vitellogenin-serum. In drones vitellogenin is one of the minor fractions of the hemolymph proteins. Genetic and regulatory aspects of vitellogenin synthesis in male bees are discussed.  相似文献   
158.
We have shown previously that estrogen (estradiol, E2) supplementation enhances voluntary alcohol consumption in ovariectomized female rodents and that increased alcohol consumption impairs ischemic hind limb vascular repair. However, the effect of E2-induced alcohol consumption on post-infarct myocardial repair and on the phenotypic/functional properties of endothelial progenitor cells (EPCs) is not known. Additionally, the molecular signaling of alcohol-estrogen interactions remains to be elucidated. This study examined the effect of E2-induced increases in ethanol consumption on post-infarct myocardial function/repair. Ovariectomized female mice, implanted with 17β-E2 or placebo pellets were given access to alcohol for 6 weeks and subjected to acute myocardial infarction. Left ventricular functions were consistently depressed in mice consuming ethanol compared with those receiving only E2. Alcohol-consuming mice also displayed significantly increased infarct size and reduced capillary density. Ethanol consumption also reduced E2-induced mobilization and homing of EPCs to injured myocardium compared with the E2-alone group. In vitro, exposure of EPCs to ethanol suppressed E2-induced proliferation, survival, and migration and markedly altered E2-induced estrogen receptor-dependent cell survival signaling and gene expression. Furthermore, ethanol-mediated suppression of EPC biology was endothelial nitric oxide synthase-dependent because endothelial nitric oxide synthase-null mice displayed an exaggerated response to post-acute myocardial infarction left ventricular functions. These data suggest that E2 modulation of alcohol consumption, and the ensuing EPC dysfunction, may negatively compete with the beneficial effects of estrogen on post-infarct myocardial repair.  相似文献   
159.
160.
Reduced FCGR3B copy number is associated with increased risk of systemic lupus erythematosus (SLE). The five FCGR2/FCGR3 genes are arranged across two highly paralogous genomic segments on chromosome 1q23. Previous studies have suggested mechanisms for structural rearrangements at the FCGR2/FCGR3 locus and have proposed mechanisms whereby altered FCGR3B copy number predisposes to autoimmunity, but the high degree of sequence similarity between paralogous segments has prevented precise definition of the molecular events and their functional consequences. To pursue the genomic pathology associated with FCGR3B copy-number variation, we integrated sequencing data from fosmid and bacterial artificial chromosome clones and sequence-captured DNA from FCGR3B-deleted genomes to establish a detailed map of allelic and paralogous sequence variation across the FCGR2/FCGR3 locus. This analysis identified two highly paralogous 24.5 kb blocks within the FCGR2C/FCGR3B/FCGR2B locus that are devoid of nonpolymorphic paralogous sequence variations and that define the limits of the genomic regions in which nonallelic homologous recombination leads to FCGR2C/FCGR3B copy-number variation. Further, the data showed evidence of swapping of haplotype blocks between these highly paralogous blocks that most likely arose from sequential ancestral recombination events across the region. Functionally, we found by flow cytometry, immunoblotting and cDNA sequencing that individuals with FCGR3B-deleted alleles show ectopic presence of FcγRIIb on natural killer (NK) cells. We conclude that FCGR3B deletion juxtaposes the 5′-regulatory sequences of FCGR2C with the coding sequence of FCGR2B, creating a chimeric gene that results in an ectopic accumulation of FcγRIIb on NK cells and provides an explanation for SLE risk associated with reduced FCGR3B gene copy number.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号