首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   15篇
  国内免费   1篇
  126篇
  2024年   1篇
  2023年   6篇
  2022年   2篇
  2021年   12篇
  2020年   9篇
  2019年   5篇
  2018年   10篇
  2017年   5篇
  2016年   11篇
  2015年   12篇
  2014年   13篇
  2013年   7篇
  2012年   13篇
  2011年   9篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有126条查询结果,搜索用时 16 毫秒
11.
12.
Saline stress is responsible for significant reductions in the growth of plants, and it globally leads to limitations in the performance of crops, especially in drought-affected areas. However, a better understanding of the mechanisms involved in the resistance of plants to environmental stress can lead to a better plant breeding and selection of cultivars. Mint is one of the most important medicinal plants, and it has important properties for industry, and for the medicinal and pharmacy fields. The effects of salinity on the biochemical and enzymatic properties of 18 ecotypes of mint from six different species, that is, Mentha piperita, Mentha mozafariani, Mentha rotundifolia, Mentha spicata, Mentha pulegium and Mentha longifolia, have been examined in this study. The experimental results showed that salinity increased with increasing in stress integrity influenced the enzymatic properties, proline content, electrolyte leakage, and the hydrogen peroxide, malondialdehyde, and essential oil contents. Cluster analysis and principal component analysis were conducted, and they grouped the studied species on the basis of their biochemical characteristics. According to the obtained biplot results, M. piperita and M. rotundifolia showed better stress tolerance than the other varieties, and M. longifolia was identified as being salt sensitive. Generally, the results showed that H2O2 and malondialdehyde had a positive connection with each other and showed a reverse relationship with all the enzymatic and non-enzymatic antioxidants. Finally, it was found that the M. spicata, M. rotundifolia and M. piperita ecotypes could be used for future breeding projects to improve the salinity tolerance of other ecotypes.  相似文献   
13.
Toxin-antitoxin (TA) systems are two-component genetic modules widespread in bacterial and archaeal genomes, in which the toxin module is rendered inactive under resting conditions by its antitoxin counterpart. Under stress conditions, however, the antitoxin is degraded, freeing the toxin to exert its lethal effects. Although not evolved to function in eukaryotes, some studies have established the lethal activity of these bacterial toxins by inducing apoptosis in mammalian cells, an effect that can be neutralized by its cognate antitoxin. Inspired by the way the toxin can become active in eukaryotes cells, we produced an engrained yoeB-yefM TA system to selectively kill human breast cancer cells expressing a high level of miR-21. Accordingly, we generated an engineered yefM antitoxin gene with eight miR-21 target sites placed in its 3′untranslated region. The resulting TA system acts autonomously in human cells, distinguishing those that overexpress miR-21, killed by YoeB, from those that do not, remaining protected by YefM. Thus, we indicated that microRNA-control of the antitoxin protein of bacterial TA systems constitutes a novel strategy to enhance the selective killing of human cancer cells by the toxin module. The present study provides significant insights for developing novel anticancer strategies avoiding off-target effects, a challenge that has been pursued by many investigators over the years.  相似文献   
14.
Use of small interfering RNA (siRNA) is a promising approach for AML treatment as the siRNA molecule can be designed to specifically target proteins that contribute to aberrant cell proliferation in this disease. However, a clinical-relevant means of delivering siRNA molecules must be developed, as the cellular delivery of siRNA is problematic. Here, we report amphiphilic carriers combining a cationic polymer (2 kDa polyethyleneimine, PEI2) with lipophilic moieties to facilitate intracellular delivery of siRNA to AML cell lines. Complete binding of siRNA by the designed carriers was achieved at a polymer:siRNA ratio of ~0.5 and led to siRNA/polymer complexes of ~100 nm size. While the native PEI2 did not display cytotoxicity on AML cell lines THP-1, KG-1 and HL-60, lipid-modification on PEI2 slightly increased the cytotoxicity, which was consistent with increased interaction of polymers with cell membranes. Cellular delivery of siRNA was dependent on the nature of lipid substituent and the extent of lipid substitution, and varied among the three AML cell lines used. Linoleic acid-substituted polymers performed best among the prepared polymers and gave a siRNA delivery equivalent to better performing commercial reagents. Using THP-1 cells and a reporter (GFP) and an endogenous (CXCR4) target, effective silencing of the chosen targets was achieved with 25 to 50 nM of siRNA concentrations, and without adversely affecting subsequent cell growth. We conclude that lipid-substituted PEI2 can serve as an effective delivery of siRNA to leukemic cells and could be employed in molecular therapy of leukemia.  相似文献   
15.
Different morphologies of Mucor hiemalis were induced and used for the production of ethanol and biomass from rice straw through a separate hydrolysis and fermentation process. The yield of enzymatic hydrolysis was improved from 40.4% for the untreated straw to 80–93% by employing sodium hydroxide and concentrated phosphoric acid pretreatments with or without ultrasonication. The best hydrolysis performance was achieved after pretreatment by sodium hydroxide assisted with ultrasonication. The ethanol yields from the hydrolysates were 0.39–0.44 g/g depending on the pretreatment method and the fungus morphology. The yeast‐like form of the fungus showed faster glucose assimilation and slightly higher ethanol yield compared to the other morphologies. The biomass yield of mostly yeast‐like cells was more than the other morphologies (0.202–0.282 g/g glucose). Moreover, the biomass of the yeast‐like cells had more protein content (46.7–52.4 %) compared to filamentous cells (37.7–46.3 %). The cell wall, alkali‐insoluble material (AIM) of the biomass, represented 16.3–20.1% of the biomass. On average, total chitin‐chitosan content of AIM of the biomass of purely filamentous, mostly filamentous, mostly yeast‐like, and purely yeast‐like forms of the fungus was 0.460, 0.373, 0.330, and 0.336 g/g AIM of the biomass, respectively.  相似文献   
16.
Carbacylamidophosphates with the general formula RC(O)NHP(O)R1R2 constitute organophosphorus compounds that are used as insecticides, pesticides and ureas inhibitors. In this work, we studied the inhibition potency of CCl3-C(O)NHP(O)Cl21, CHCl2C(O)NHP(O)Cl(2)2, CH2ClC(O)NHP(O)Cl23 and CF3C(O)NHP(O)Cl(2)4, which are the major intermediates for carbacylamidophosphates synthesis towards human erythrocyte acetylcholinesterase (hAChe) activity using Ellman's modified kinetic method. Unexpectedly, it was observed that they were not only hydrolytically unstable but also inhibited hAChE in a similar manner to that produced by organophosphorus insecticides. Enzymatic data, bimolecular inhibition rate constants (ki) and IC50 values for inhibition of hAChE demonstrated that they are irreversible inhibitors and the inhibition potency of compound 2 (IC50 = 88 microM) was the greatest in comparison with compounds 1, 3 and 4. Also the electropositivity of the phosphorus atom and the hydrophobicity of the compounds demonstrated that these two factors play an additional effect and different role in the inhibitory activity of these compounds. Hydrolytic stability of the compounds was determined by 31P NMR monitoring of the loss of the parent molecules with D2O as a function of time. This study considers antiacetylcholinesterase activity according to the structural and the electronic aspects of compounds 1-4, according to IR, 1H, 13C and 31P NMR spectral data.  相似文献   
17.
Sortases of Gram-positive bacteria catalyze the covalent C-terminal anchoring of proteins to the cell wall. Bacillus subtilis, a well-known host organism for protein production, contains two putative sortases named YhcS and YwpE. The present studies were aimed at investigating the possible sortase function of these proteins in B. subtilis. Proteomics analyses revealed that sortase-mutant cells released elevated levels of the putative sortase substrate YfkN into the culture medium upon phosphate starvation. The results indicate that YfkN required sortase activity of YhcS for retention in the cell wall. To analyze sortase function in more detail, we focused attention on the potential sortase substrate YhcR, which is co-expressed with the sortase YhcS. Our results showed that the sortase recognition and cell-wall-anchoring motif of YhcR is functional when fused to the Bacillus pumilus chitinase ChiS, a readily detectable reporter protein that is normally secreted. The ChiS fusion protein is displayed at the cell wall surface when YhcS is co-expressed. In the absence of YhcS, or when no cell-wall-anchoring motif is fused to ChiS, the ChiS accumulates predominately in the culture medium. Taken together, these novel findings show that B. subtilis has a functional sortase for anchoring proteins to the cell wall.  相似文献   
18.
In an experimental study, we evaluated acoustic immittance in rabbits in order to use these data as normative values for further experimental investigations. This study is the first experimental evaluation of both conventional 226 Hz and multifrequency tympanometry (MFT) in rabbits. For the investigation, we used 33 female New Zealand rabbits weighing 3.2-4.4 kg and aged six months. Bilateral measurements using conventional 226 Hz and MFT were performed under general anaesthetic. A 226 Hz tympanogram was recorded for all animals by conducting an air pressure sweep from +200 to -400 daPa at a rate of 50 daPa/s. Subsequent tympanograms were recorded over a wide frequency range from 250 to 2000 Hz. The acoustic impedance device used in this study provided reproducible and evaluable tympanograms. The applied tone frequency of 226 Hz proved to be especially suitable for determining compliance. Normative data obtained from our study reveal the resonance frequency to be 1368 +/- 205 standard deviation (SD) for the right side and 1413 +/- 216 SD for the left side. The values for physiological acoustic immittance of the middle ear in the rabbit obtained here can serve as normative data in subsequent experimental animal studies.  相似文献   
19.
When there is a debonding at the bone-implant interface, the difference in stiffness between the implant and the bone can result in micromotion, allowing existing gaps to open further or new gaps to be created during physiological loading. It has been suggested that periprosthetic fluid flow and high pressure may play an important role in osteolysis development in the proximity of these gaps. To explain this phenomenon, the concepts of "effective joint space" and "pumping stem" have been cited in many studies. However, there is no clear understanding of the factors causing, or contributing to, these mechanisms. It is likely that capsular pressure, gap dimensions, and micromotion of the gap during cyclic loading of an implant can play a defining role in inducing periprosthetic flow. In order to obtain a better understanding of the main influences on periprosthetic flows and the development of osteolysis, steady state and transient 2D computational fluid dynamic simulations were performed for the joint capsule of the lateral side of a stem-femur system, and a gap in communication with the capsule and the surrounding bone. It was shown that high capsular pressure may be the main driving force for high fluid pressure and flow in the bone surrounding the gap, while micromotion of only very long and narrow gaps can cause significant pressure and flow in the bone. At low capsular pressure, micromotion induced large flows in the gap region; however, the flow in the bone tissue was almost unaffected. The results also revealed the existence of high velocity spikes in the bone region at the bottom of the gap. These velocity spikes can exert excessive fluid shear stress on the bone cells and disturb the local biological balance of the surrounding interstitial fluid which can result in osteolysis development. High capsular pressure was observed to be the main cause of these velocity spikes whereas, at low capsular pressure, gap micromotion of only very long and narrow gaps generated significant velocity spikes in the bone at the bottom of the gaps.  相似文献   
20.
Varicose veins are the most common vascular disease in humans. Veins have valves that help the blood return gradually to the heart without leaking blood. When these valves become weak, blood and fluid collect and pool by pressing against the walls of the veins, causing varicose veins. In the cardiovascular system, mechanical forces are important determinants of vascular homeostasis and pathological processes. Blood vessels are constantly exposed to a variety of hemodynamic forces, including shear stress and environmental strains caused by the blood flow. In varicose veins within the leg, venous blood pressure rises in the vein of the lower extremities due to prolonged standing, creating a peripheral tension in the vessel wall thereby causing mechanical stimulation of endothelial cells and vascular smooth muscle. Studies have shown that long-term increased exposure to vascular wall tension is associated with the overexpression of HIF-1α and HIF-2α and increased levels of MMP-2 and MMP-9, thereby reducing venous contraction and progressive venous dilatation, which is involved in the development of varicose veins. Following the expression of metalloproteinase, the expression of type 1 collagen increases, and the amount of type 3 collagen decreases. Therefore, collagen imbalance will cause the varicose veins to not stretch. Loss of structural proteins (type 3 collagen and elastin) in the vessel wall causes the loss of the biophysical properties of the varicose vein wall. This review article tries to elaborate on the effect of mechanical forces and sensors of these forces on the vascular wall in creating the mechanism of mechanosignaling, as well as the role of the onset of molecular signaling cascades in the pathology of varicose veins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号