首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25409篇
  免费   15523篇
  国内免费   4篇
  2024年   2篇
  2023年   25篇
  2022年   99篇
  2021年   413篇
  2020年   2210篇
  2019年   3749篇
  2018年   3848篇
  2017年   4117篇
  2016年   4097篇
  2015年   3997篇
  2014年   3648篇
  2013年   4081篇
  2012年   1736篇
  2011年   1440篇
  2010年   2997篇
  2009年   1757篇
  2008年   641篇
  2007年   230篇
  2006年   226篇
  2005年   272篇
  2004年   252篇
  2003年   243篇
  2002年   234篇
  2001年   247篇
  2000年   182篇
  1999年   130篇
  1998年   10篇
  1997年   4篇
  1996年   4篇
  1995年   7篇
  1994年   6篇
  1993年   5篇
  1992年   6篇
  1991年   7篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1983年   1篇
  1981年   1篇
  1979年   2篇
  1889年   1篇
  1882年   1篇
  1881年   1篇
  1873年   1篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
141.
142.
One of the central controversies in contemporary taxonomy and systematics revolves around whether to accept or to reject paraphyletic taxa. The present review is the result of a survey of the ongoing discussion in botany over the past ca. 15 years, and attempts to systematically and critically assess all individual arguments presented for the formal recognition of paraphyletic groups in the classification of life. Where arguments are found to be without merit, rebuttals are presented in the hope of excluding them from further discussion, which can then concentrate on those that have merit. Where arguments are found to be sound, their implications and possible solutions are discussed. The controversy around paraphyletic taxa can be broken down into three questions: whether their rejection or acceptance would lead to a classification better reflecting patterns of biological diversity and evolutionary history; whether their rejection or acceptance would lead to a more practical, useful and predictive classification; and whether their rejection is compatible with ranked and binary Linnaean taxonomy. All available arguments for paraphyletic taxa relating to the first question are demonstrated to be based on various logical fallacies or false premises, especially misunderstandings of the principles of phylogenetic systematics. The issue of usefulness is harder to resolve, as different classifications serve different needs. It is presumably unavoidable but also preferable that phylogenetic and non‐phylogenetic ways of classifying species continue to coexist, serving different needs. Finally, an insistence on monophyletic taxa is found to be incompatible with binary taxonomy under a set of very specific circumstances and assumptions whose presence and accuracy are not universally accepted. © The Willi Hennig Society 2011.  相似文献   
143.
The midgut epithelial cells of many invertebrates may possess microorganisms which act as symbionts or pathogens (bacteria, microsporidia, viruses). During our previous studies on Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada, Eutardigrada), which examined alterations of the midgut epithelium during oogenesis, we found that some of the specimens were infected with microsporidia. All stages of pathogens occurred in the cytoplasm of the digestive cells in the midgut epithelium of I. g. granulifer that were infected with microsporidia: meronts, sporonts, sporoblasts, and spores. The cytoplasm of the digestive cells was rich in mitochondria, cisterns of rough endoplasmic reticulum (RER), and Golgi complexes. Autophagy in the digestive cells of the dorsal midgut was much more intensive in comparison with noninfected specimens. Membranes of phagophores surrounded the pathogens forming autophagosomes. These latter structures fused with lysosomes forming autolysosomes and residual bodies appeared. Neither glycogen granules nor droplets of varying electron density, which accumulated in digestive cells during vitellogenesis and choriogenesis, appeared in individuals with microsporidia. While the midgut epithelium in noninfected specimens takes part in vitellogenesis and choriogenesis, in infected specimens, midgut cells are involved in the process of autophagy as a survival strategy.  相似文献   
144.
Peripheral and integral membrane proteins can be located in several different subcellular compartments, and it is often necessary to determine the location of such proteins or to track their movement in living cells. Image‐based colocalization of labeled membrane proteins and compartment markers is frequently used for this purpose, but this method is limited in terms of throughput and resolution. Here we show that bioluminescence resonance energy transfer (BRET) between membrane proteins of interest and compartment‐targeted BRET partners can report subcellular location and movement of membrane proteins in live cells. The sensitivity of the method is sufficient to localize a few hundred protein copies per cell. The spatial resolution can be sufficient to determine membrane topology, and the temporal resolution is sufficient to track changes that occur in less than 1 second. BRET requires little user intervention, and is thus amenable to large‐scale experimental designs with standard instruments.  相似文献   
145.
The adsorption of chiral Gly‐Pro dipeptide on Cu(110) has been characterized by combining in situ polarization modulation infrared reflection absorption spectroscopy (PM‐RAIRS) and X‐ray photoelectron spectroscopy (XPS). The chemical state of the dipeptide, and its anchoring points and adsorption geometry, were determined at various coverage values. Gly‐Pro molecules are present on Cu(110) in their anionic form (NH2/COO) and adsorb under a 3‐point binding via both oxygen atoms of the carboxylate group and via the nitrogen atom of the amine group. Low‐energy electron diffraction (LEED) and scanning tunneling microscopy (STM) have shown the presence of an extended 2D chiral array, sustained via intermolecular H‐bonds interactions. Furthermore, due to the particular shape of the molecule, only one homochiral domain is formed, creating thus a truly chiral surface. Chirality 27:411–416, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
146.
147.
148.
149.
Hyperosmolarity plays an essential role in the pathogenesis of diabetic tubular fibrosis. However, the mechanism of the involvement of hyperosmolarity remains unclear. In this study, mannitol was used to evaluate the effects of hyperosmolarity on a renal distal tubule cell line (MDCK). We investigated transforming growth factor‐β receptors and their downstream fibrogenic signal proteins. We show that hyperosmolarity significantly enhances the susceptibility to exogenous transforming growth factor (TGF)‐β1, as mannitol (27.5 mM) significantly enhanced the TGF‐β1‐induced increase in fibronectin levels compared with control experiments (5.5 mM). Specifically, hyperosmolarity induced tyrosine phosphorylation on TGF‐β RII at 336 residues in a time (0–24 h) and dose (5.5–38.5 mM) dependent manner. In addition, hyperosmolarity increased the level of TGF‐β RI in a dose‐ and time‐course dependent manner. These observations may be closely related to decreased catabolism of TGF‐β RI. Hyperosmolarity significantly downregulated the expression of an inhibitory Smad (Smad7), decreased the level of Smurf 1, and reduced ubiquitination of TGF‐β RI. In addition, through the use of cycloheximide and the proteasome inhibitor MG132, we showed that hyperosmolarity significantly increased the half‐life and inhibited the protein level of TGF‐β RI by polyubiquitination and proteasomal degradation. Taken together, our data suggest that hyperosmolarity enhances cellular susceptibility to renal tubular fibrosis by activating the Smad7 pathway and increasing the stability of type I TGF‐β receptors by retarding proteasomal degradation of TGF‐β RI. This study clarifies the mechanism underlying hyperosmotic‐induced renal fibrosis in renal distal tubule cells. J. Cell. Biochem. 109: 663–671, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
150.
Chick embryos grown in ex ovo culture by the modified Cornish pasty method reported in Nagai, Lin and Sheng in this issue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号