首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1743篇
  免费   107篇
  国内免费   6篇
  1856篇
  2024年   5篇
  2023年   23篇
  2022年   46篇
  2021年   67篇
  2020年   67篇
  2019年   108篇
  2018年   96篇
  2017年   57篇
  2016年   68篇
  2015年   74篇
  2014年   114篇
  2013年   142篇
  2012年   166篇
  2011年   142篇
  2010年   76篇
  2009年   62篇
  2008年   81篇
  2007年   92篇
  2006年   55篇
  2005年   54篇
  2004年   32篇
  2003年   55篇
  2002年   44篇
  2001年   10篇
  2000年   12篇
  1999年   11篇
  1998年   11篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   7篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   7篇
  1987年   4篇
  1986年   4篇
  1984年   4篇
  1983年   4篇
  1979年   2篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1966年   1篇
  1962年   1篇
  1961年   2篇
  1960年   1篇
  1959年   1篇
排序方式: 共有1856条查询结果,搜索用时 15 毫秒
61.
Electrophoresis continues to be a mainstay in molecular genetic laboratories for checking, sizing and separating both PCR products, nucleic acids derived from in vivo or in vitro sources and nucleic acid–protein complexes. Many genomic and genetic applications demand high throughput, such as the checking of amplification products from many loci, from many clones, from many cell lines or from many individuals at once. These applications include microarray resource development and expression analysis, genome mapping, library and DNA bank screening, mutagenesis experiments and single nucleotide polymorphism (SNP) genotyping. PCR hardware compatible with industry standard 96 and 384 well microplates is commonplace. We have previously described a simple system for submerged horizontal 96 and 192 well polyacrylamide or agarose microplate array diagonal gel electrophoresis (MADGE) which is microplate compatible and suitable for PCR checking, SNP typing (restriction fragment length polymorphism or amplification refractory mutation system), microsatellite sizing and identification of unknown mutations. By substantial redesign of format and operations, we have derived an efficient ‘dry’ gel system that enables direct 96 pin manual transfer from PCR or other reactions in microplates, into 768 or 384 well gels. Combined with direct electrode contact in clamshell electrophoresis boxes which plug directly to contacts in a powered stacking frame and using 5–10 min electrophoresis times, it would be possible (given a sufficient supply of PCRs for examination) for 1 million gel tracks to be run per day for a minimal hardware investment and at minimal reagent costs. Applications of this system for PCR checking and SNP genotyping are illustrated.  相似文献   
62.
The emergence of highly virulent community acquired Staphylococcus aureus and continued progression of resistance to multiple antimicrobials, including methicillin and vancomycin, marks the reemergence of S. aureus as a serious health care threat. Investigation of proteins localized to the cell surface could help to elucidate mechanisms of virulence and antibiotic resistance in S. aureus. In this study, proteomic profiling methods were developed to solubilize, display, and evaluate abundance levels of proteins present in the supernatants of the lysostaphin-digested cell envelope from cultured vancomycin-intermediate S. aureus (VISA) cells. Combining approaches of 2-DE or chromatographic separation of proteins with MS analyses resulted in the identification of 144 proteins of particular interest. Of these proteins, 48 contained predicted cell wall localization or export signal motifs, including 14 with distinct covalent peptidoglycan-anchor sites, four of which are uncharacterized to date. One of the two most abundant cell envelope proteins, which showed remarkably high variations in MW and pI in the 2-DE gel display, was the S. aureus surface protein G. The display of numerous secreted proteins that are not covalently cell wall-anchored, suggests that, in the exponential growth phase, secreted proteins can be retained physiologically in the cell envelope and may interact with cell wall-anchored proteins and carbohydrate structures in a manner yet to be determined. The remaining 96 proteins, devoid of recognizable motifs, were repeatedly profiled in the VISA cell envelope fractions. We describe a novel semiquantitative method to determine abundance factors of such proteins in 2-DE gels of cell envelope fractions relative to whole cell lysates and discuss these data in the context of true cell envelope localization versus experimentally caused cell lysis.  相似文献   
63.
It is well established that misfolded forms of cellular prion protein (PrP [PrP(C)]) are crucial in the genesis and progression of transmissible spongiform encephalitis, whereas the function of native PrP(C) remains incompletely understood. To determine the physiological role of PrP(C), we examine the neurophysiological properties of hippocampal neurons isolated from PrP-null mice. We show that PrP-null mouse neurons exhibit enhanced and drastically prolonged N-methyl-d-aspartate (NMDA)-evoked currents as a result of a functional upregulation of NMDA receptors (NMDARs) containing NR2D subunits. These effects are phenocopied by RNA interference and are rescued upon the overexpression of exogenous PrP(C). The enhanced NMDAR activity results in an increase in neuronal excitability as well as enhanced glutamate excitotoxicity both in vitro and in vivo. Thus, native PrP(C) mediates an important neuroprotective role by virtue of its ability to inhibit NR2D subunits.  相似文献   
64.
Ascorbate (vitamin C) is a potent antioxidant protecting plants against oxidative damage imposed by environmental stresses such as ozone and drought. Dehydroascorbate reductase (DHAR; EC 1.8.5.1) is one of the two important enzymes functioning in the regeneration of ascorbate (AsA). To examine the protective role of DHAR against oxidative stress, we developed transgenic tobacco plants overexpressing cytosolic DHAR gene from Arabidopsis thaliana . Incorporation of the transgene in the genome of tobacco plants was confirmed by polymerase chain reaction and Southern blot analysis, and its expression was confirmed by Northern and Western blot analyses. These transgenic plants exhibited 2.3–3.1 folds higher DHAR activity and 1.9–2.1 folds higher level of reduced AsA compared with non-transformed control plants. The transgenic plants showed maintained redox status of AsA and exhibited an enhanced tolerance to ozone, drought, salt, and polyethylene glycol stresses in terms of higher net photosynthesis. In this study, we report for the first time that the elevation of AsA level by targeting DHAR overexpression in cytosol properly provides a significantly enhanced oxidative stress tolerance imposed by drought and salt.  相似文献   
65.
Molecular Biology Reports - Among different pathological mechanisms, neuronal loss and neurogenesis impairment in the hippocampus play important roles in cognitive decline in Alzheimer’s...  相似文献   
66.

Objectives

Donor specific antibodies (DSA) and a positive cross‐match are contraindications for kidney transplantation. Trials of allograft transplantation across the HLA barrier have employed desensitization strategies, including the use of plasmapheresis, intravenous immunoglobulins, anti‐B‐cell monoclonal antibodies and splenectomy, associated with high‐intensity immunosuppressive regimens. Our case 1 report suffered from repeatedly positive lymphocyte cross match after 1st renal transplantation. Graft nephrectomy could not correct the state of sensitization. Splenectomy was done in a trial to get rid of the antibody producing clone. Furthermore plasmapheresis with low dose IVIG could not as well revert the state of sensitization for the patient.

Material and methods

About 50 millions donor specific MSCs were injected to the patient.

Results

MSCs transfusion proved to be the only procedure which could achieve successful desensitization before performing the second transplantation owing to their immunosuppressive properties.

Conclusion

This case indicates that DS‐MSCs is a potential option for anti‐HLA desensitization. In cases 2 and 3 IV DS‐MSCs transfusion was selected from the start as a successful line of treatment for pre renal transplantation desensitization to save other unnecessary lines of treatment that were tried in case 1.
  相似文献   
67.
Retinopathy of prematurity (ROP) is a multifactorial disease, that cause visual impairment in premature children. The exact pathogenesis and etiology of ROP is unknown and genetic susceptibility is considered as risk factor. Vascular endothelial growth factor (VEGF) plays a major role in retinal neovascularization and subsequently retinal detachment. VEGF polymorphism is associated with proliferative ROP in some studies. We examined the possible association of the VEGF gene polymorphisms with ROP in preterm infants in south of Iran. A total of 111 preterm infants were examined by ophthalmologist and after that were genotyped. Genotyping of the VEGF +405 (rs2010963) and VEGF +936 (rs3025039) was done by the polymerase chain reaction and restriction fragment length polymorphism methods. The frequency of VEGF alleles, genotypes and haplotype distribution were compared between groups. The patients were divided in three groups: 66 to the normal group (normal fundoscopy), and 45 to the ROP group; 30 infants were not treated with Lasertherapy (Regressive group) and 15 treated with Lasertherapy. The frequency of VEGF +405 and VEGF +936 G/C genotypes as well as allele frequencies was not different between groups. No significant difference was found between ROP with treatment and ROP without lasertherapy. Our report indicate that there is no association between the carrier states of gene polymorphisms VEGF +405, VEGF +936 and progression or spontaneous regression of ROP in preterm infants in Iranian population. However, it should be considered that angiogenesis is a complex process and genetic factors in addition to environmental factors are contributed in this pathway.  相似文献   
68.

Background

Long-term and unresolved airway inflammation and airway remodeling, characteristic features of chronic asthma, if not treated could lead to permanent structural changes in the airways. Aldose reductase (AR), an aldo-sugar and lipid aldehyde metabolizing enzyme, mediates allergen-induced airway inflammation in mice, but its role in the airway remodeling is not known. In the present study, we have examined the role of AR on airway remodeling using ovalbumin (OVA)-induced chronic asthma mouse model and cultured human primary airway epithelial cells (SAECs) and mouse lung fibroblasts (mLFs).

Methods

Airway remodeling in chronic asthma model was established in mice sensitized and challenged twice a week with OVA for 6 weeks. AR inhibitor, fidarestat, was administered orally in drinking water after first challenge. Inflammatory cells infiltration in the lungs and goblet cell metaplasia, airway thickening, collagen deposition and airway hyper-responsiveness (AHR) in response to increasing doses of methacholine were assessed. The TGFβ1-induced epithelial-mesenchymal transition (EMT) in SAECs and changes in mLFs were examined to investigate AR-mediated molecular mechanism(s) of airway remodeling.

Results

In the OVA-exposed mice for 6 wks inflammatory cells infiltration, levels of inflammatory cytokines and chemokines, goblet cell metaplasia, collagen deposition and AHR were significantly decreased by treatment with AR inhibitor, fidarestat. Further, inhibition of AR prevented TGFβ1-induced altered expression of E-cadherin, Vimentin, Occludin, and MMP-2 in SAECs, and alpha-smooth muscle actin and fibronectin in mLFs. Further, in SAECs, AR inhibition prevented TGFβ1- induced activation of PI3K/AKT/GSK3β pathway but not the phosphorylation of Smad2/3.

Conclusion

Our results demonstrate that allergen-induced airway remodeling is mediated by AR and its inhibition blocks the progression of remodeling via inhibiting TGFβ1-induced Smad-independent and PI3K/AKT/GSK3β-dependent pathway.  相似文献   
69.
The tissues of multicellular organisms are made of differentiated cells arranged in organized patterns. This organization emerges during development from the coupling of dynamic intra- and intercellular regulatory networks. This work applies the methods of information theory to understand how regulatory network structure both within and between cells relates to the complexity of spatial patterns that emerge as a consequence of network operation. A computational study was performed in which undifferentiated cells were arranged in a two dimensional lattice, with gene expression in each cell regulated by identical intracellular randomly generated Boolean networks. Cell–cell contact signalling between embryonic cells is modeled as coupling among intracellular networks so that gene expression in one cell can influence the expression of genes in adjacent cells. In this system, the initially identical cells differentiate and form patterns of different cell types. The complexity of network structure, temporal dynamics and spatial organization is quantified through the Kolmogorov-based measures of normalized compression distance and set complexity. Results over sets of random networks that operate in the ordered, critical and chaotic domains demonstrate that: (1) ordered and critical networks tend to create the most information-rich patterns; (2) signalling configurations in which cell-to-cell communication is non-directional mostly produce simple patterns irrespective of the internal network domain; and (3) directional signalling configurations, similar to those that function in planar cell polarity, produce the most complex patterns, but only when the intracellular networks function in non-chaotic domains.  相似文献   
70.
Three new phenolic compounds, sorlanin (4-(3-(hydroxymethyl)-5-methoxy-7-phenyl-2,3-dihydrobenzo[b][1,4]dioxin-2-yl)-2-methoxyphenol, 1), sorbanin (2-((3,5-dimethoxy-[1,1′-biphenyl]-4-yl)oxy)-1-(4-hydroxy-3-methoxyphenyl)propane-1,3-diol, 2) and sorbalanin (4-(3-(hydroxymethyl)-5,6-dimethoxy-2,3-dihydrobenzo[b][1,4]dioxino[2,3-g]benzofuran-2-yl)-2-methoxyphenol, 3), together with eight known compounds, polystachyol (4), isolariciresinol (5), dihydrodehydrodiconiferyl alcohol (6), tuberculatin (7), ovafolinin E (8), aucuparin (9), 2′-methoxyaucuparin (10), and tetracosyl-3-(3,4-dihydroxyphenyl)acrylate (11), were isolated from Sorbus lanata. The structures of these phytoconstituents were elucidated through extensive spectroscopic techniques, including UV, IR, 1D and 2D NMR, ESI-MS and HRESI-MS experiments. All the compounds except 9 and 10 were isolated for the first time from the genus Sorbus. The isolated compounds were also tested in DPPH radical scavenging reaction where compounds 6, 7, 10 and 11 showed significant activities with IC50 values of 9.2, 11.7, 23.0 and 33.7 μM, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号