首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1893篇
  免费   116篇
  国内免费   6篇
  2015篇
  2024年   5篇
  2023年   24篇
  2022年   51篇
  2021年   73篇
  2020年   70篇
  2019年   115篇
  2018年   104篇
  2017年   62篇
  2016年   72篇
  2015年   77篇
  2014年   131篇
  2013年   153篇
  2012年   177篇
  2011年   156篇
  2010年   82篇
  2009年   66篇
  2008年   89篇
  2007年   95篇
  2006年   62篇
  2005年   57篇
  2004年   33篇
  2003年   62篇
  2002年   50篇
  2001年   13篇
  2000年   13篇
  1999年   13篇
  1998年   12篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   9篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   8篇
  1987年   6篇
  1986年   6篇
  1984年   4篇
  1983年   6篇
  1979年   2篇
  1972年   2篇
  1970年   1篇
  1966年   1篇
  1963年   1篇
  1962年   1篇
  1961年   2篇
  1960年   1篇
  1959年   1篇
排序方式: 共有2015条查询结果,搜索用时 22 毫秒
121.
Cell communication through extracellular vesicles (EVs) has been defined for many years and it is not limited only to neighboring cells, but also distant ones in organisms receive these signals. These vesicles are secreted from the variety of cells and are composed of a distinctive component such as proteins, lipids, and nucleic acids. EVs have different classified subgroups regarding their cell origin, in this context, exosomes are the most appealing particles in cell biology, especially clinical in recent years and are represented as novel therapeutic agents with numerous advantages alongside and/or over cell therapy. However, cell therapy had a hopeful outcome in gastrointestinal diseases which have minimal alternatives in their treatments. Inflammatory bowel disease (IBD), liver fibrosis, gastrointestinal cancers are the examples that cell therapy and immunotherapy were applied in their treatment, therefore, the cell products like exosomes are the beneficial option in their treatment even cancers with promising results in animal models. In this review, we consider the main defined biogenesis, function, and component of secreted exosomes in different cells with a specific focus on the potential application of these exosomes as a cell-free therapeutic approach in gastrointestinal diseases like IBD, gastric cancer, and colon cancer. Additionally, exosomes role as therapeutic reagents mainly mesenchymal stem cells and dendritic cell-derived exosomes in different studies have been under intense investigation and even they are being studied in different clinical trials. Therefore, all these striking functions described for secretome implies the importance of these biocarriers.  相似文献   
122.
Maintaining the architecture, size and composition of an intact stem cell (SC) compartment is crucial for tissue homeostasis and regeneration throughout life. In mammalian skin, elevated expression of the anti‐apoptotic Bcl‐2 protein has been reported in hair follicle (HF) bulge SCs (BSCs), but its impact on SC function is unknown. Here, we show that systemic exposure of mice to the Bcl‐2 antagonist ABT‐199/venetoclax leads to the selective loss of suprabasal BSCs (sbBSCs), thereby disrupting cyclic HF regeneration. RNAseq analysis shows that the pro‐apoptotic BH3‐only proteins BIM and Bmf are upregulated in sbBSCs, explaining their addiction to Bcl‐2 and the marked susceptibility to Bcl‐2 antagonism. In line with these observations, conditional knockout of Bcl‐2 in mouse epidermis elevates apoptosis in BSCs. In contrast, ectopic Bcl‐2 expression blocks apoptosis during HF regression, resulting in the accumulation of quiescent SCs and delaying HF growth in mice. Strikingly, Bcl‐2‐induced changes in size and composition of the HF bulge accelerate tumour formation. Our study identifies a niche‐instructive mechanism of Bcl‐2‐regulated apoptosis response that is required for SC homeostasis and tissue regeneration, and may suppress carcinogenesis.  相似文献   
123.
The DNA binding activity of NF-κB is critical for VCAM-1 expression during inflammation. DNA-dependent protein kinase (DNA-PK) is thought to be involved in NF-κB activation. Here we show that DNA-PK is required for VCAM-1 expression in response to TNF. The phosphorylation and subsequent degradation of I-κBα as well as the serine 536 phosphorylation and nuclear translocation of p65 NF-κB were insufficient for VCAM-1 expression in response to TNF. The requirement for p50 NF-κB in TNF-induced VCAM-1 expression may be associated with its interaction with and phosphorylation by DNA-PK, which appears to be dominant over the requirement for p65 NF-κB activation. p50 NF-κB binding to its consensus sequence increased its susceptibility to phosphorylation by DNA-PK. Additionally, DNA-PK activity appeared to increase the association between p50/p50 and p50/p65 NF-κB dimers upon binding to DNA and after binding of p50 NF-κB to the VCAM-1 promoter. Analyses of the p50 NF-κB protein sequence revealed that both serine 20 and serine 227 at the amino terminus of the protein are putative sites for phosphorylation by DNA-PK. Mutation of serine 20 completely eliminated phosphorylation of p50 NF-κB by DNA-PK, suggesting that serine 20 is the only site in p50 NF-κB for phosphorylation by DNA-PK. Re-establishing wild-type p50 NF-κB, but not its serine 20/alanine mutant, in p50 NF-κB(-/-) fibroblasts reversed VCAM-1 expression after TNF treatment, demonstrating the importance of the serine 20 phosphorylation site in the induction of VCAM-1 expression. Together, these results elucidate a novel mechanism for the involvement of DNA-PK in the positive regulation of p50 NF-κB to drive VCAM-1 expression.  相似文献   
124.

Background  

Leptin, a 167 amino acid peptide hormone, profoundly effects reproduction exerting its biological effects via interaction with the leptin receptor (ObR) which is widely expressed on peripheral tissues. In this study, we have attempted to assess leptin receptor expression in the spermatozoa of fertile males and those diagnosed with male factor infertility; both at the mRNA or protein levels.  相似文献   
125.
126.
127.
All of the α-subgroups share similarity in their sequence and structure but different in the toxicity to various voltage-gated sodium channels (VGSCs). We modeled the first 3D structural model of the Od1 based on BmK M1 using homology modeling. The reliability of model for more investigation and compare to BmK M1 has been examined and confirmed. Then the model structure is further refined by energy minimization and molecular dynamics methods. The purpose of this modeling and simulation is comparison toxicity of two mentioned toxins by investigation structural feature of functional regions including core domain, 5-turn and C-terminal which make NC domain. In the one hand, it is intriguing that Od1 in comparison to BmK M1 shows same solvent accessible surface area (SASA) in 5-turn region but a little more exposed and feasibility (more SASA) in C-terminal region and key functional residues of C-terminal such as positive residues Arg58, lys62 and Arg (His)64. These data suggested that Od1 has similarity with BmK M1 but has more toxicity to sodium channel. In the other hand 5-turn proximity of C-terminal to 5-turn in BmK M1with cis peptide bond is less than Od1 without cis peptide bond which is a confirmation with experimental data about BmK M1.A better understanding of the 3-D structure of Od1and comparison to BmK M1 will be helpful for more investigation of functional characters action of natural toxins with a specialized role for VGSCs.  相似文献   
128.
Oxidative stress is a factor in a series of diseases and aging, primarily through irreversible oxidative modification of proteins. A major question is how nonenzymatic oxidation has the specificity to impact cellular regulation. Here, we report the degree to which in vivo protein oxidation to the ketone and aldehyde level is random using yeast as a simple model system and hydrogen peroxide as an environmental oxidative stress agent. Among 415 affinity-selected proteins identified throughout the matrix of stressed cells, oxidation sites were found in 87, predominantly on lysine, arginine, proline, histidine, threonine, and methionine residues. In almost all cases, one to two specific oxidation sites on the exterior of proteins were identified using MS-derived sequence and publicly available 3-D structural data. This suggests that, when regulation or disease progression is mediated by protein oxidation, specific new "allotypic active sites" are being created in proteins that trigger the process.  相似文献   
129.
Poly(ADP-ribose) polymerase 1 (PARP-1) and p53 are two key proteins in the DNA-damage response. Although PARP-1 is known to poly(ADP-ribosyl)ate p53, the role of this modification remains elusive. Here, we identify the major poly(ADP-ribosyl)ated sites of p53 by PARP-1 and find that PARP-1-mediated poly(ADP-ribosyl)ation blocks the interaction between p53 and the nuclear export receptor Crm1, resulting in nuclear accumulation of p53. These findings molecularly link PARP-1 and p53 in the DNA-damage response, providing the mechanism for how p53 accumulates in the nucleus in response to DNA damage. PARP-1 becomes super-activated by binding to damaged DNA, which in turn poly(ADP-ribosyl)ates p53. The nuclear export machinery is unable to target poly(ADP-ribosyl)ated p53, promoting accumulation of p53 in the nucleus where p53 exerts its transactivational function.  相似文献   
130.
A plasmid containing human coagulation factor VII (hFVII) complementary DNA regulated by a cytomegalovirus promoter was microinjected into fertilized eggs of zebrafish, African catfish, and tilapia. The active form of hFVll was detected in the fish embryos by various assays. This positive expression of human therapeutic protein in fish embryos demonstrates the possibility of exploitation of transgenic fish as bioreactors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号