首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3966篇
  免费   253篇
  国内免费   7篇
  2024年   7篇
  2023年   35篇
  2022年   90篇
  2021年   162篇
  2020年   164篇
  2019年   262篇
  2018年   228篇
  2017年   155篇
  2016年   188篇
  2015年   192篇
  2014年   276篇
  2013年   350篇
  2012年   366篇
  2011年   332篇
  2010年   182篇
  2009年   148篇
  2008年   164篇
  2007年   197篇
  2006年   140篇
  2005年   116篇
  2004年   85篇
  2003年   105篇
  2002年   85篇
  2001年   18篇
  2000年   15篇
  1999年   17篇
  1998年   14篇
  1997年   16篇
  1996年   8篇
  1995年   9篇
  1994年   7篇
  1993年   4篇
  1992年   10篇
  1991年   6篇
  1990年   5篇
  1989年   5篇
  1988年   9篇
  1987年   6篇
  1986年   7篇
  1984年   5篇
  1983年   4篇
  1980年   2篇
  1979年   4篇
  1977年   2篇
  1976年   2篇
  1975年   5篇
  1972年   2篇
  1970年   2篇
  1966年   3篇
  1961年   2篇
排序方式: 共有4226条查询结果,搜索用时 31 毫秒
61.
Abstract

A wide range of 2′,5′-dideoxy-nucleosides, including 6- substituted purine, pyrazolo[3,4-d]pyrimidine and 1-deazapurine derivatives, has been enzymatically prepared using purine nucleoside phosphorylase. Specificity towards cleavage by bacterial versus mammalian purine nucleoside phosphorylase was evaluated.  相似文献   
62.
Breast cancer is a very heterogeneous disease, encompassing several intrinsic subtypes with various morphological and molecular features, natural history and response to therapy. Currently, molecular targeted therapies are available for estrogen receptor (ER) and human epidermal growth factor receptor 2 (Her2)-positive breast tumors. However, a significant proportion of primary breast cancers are negative for ER, progesterone receptor (PgR), and Her2, comprising the triple negative breast cancer (TNBC) group. Women with TNBC have a poor prognosis because of the aggressive nature of these tumors and current lack of suitable targeted therapies. As a consequence, the identification of novel relevant protein targets for this group of patients is of great importance. Using a systematic two dimensional (2D) gel-based proteomic profiling strategy, applied to the analysis of fresh TNBC tissue biopsies, in combination with a three-tier orthogonal technology (two dimensional PAGE/silver staining coupled with MS, two dimensional Western blotting, and immunohistochemistry) approach, we aimed to identify targetable protein markers that were present in a significant fraction of samples and that could define therapy-amenable sub-groups of TNBCs. We present here our results, including a large cumulative database of proteins based on the analysis of 78 TNBCs, and the identification and validation of one specific protein, Mage-A4, which was expressed in a significant fraction of TNBC and Her2-positive/ER negative lesions. The high level expression of Mage-A4 in the tumors studied allowed the detection of the protein in the tumor interstitial fluids as well as in sera. The existence of immunotherapeutics approaches specifically targeting this protein, or Mage-A protein family members, and the fact that we were able to detect its presence in serum suggest novel management options for TNBC and human epidermal growth factor receptor 2 positive/estrogen receptor negative patients bearing Mage-A4 positive tumors.Breast cancer, although a very heterogeneous disease, can be divided into three therapeutically relevant fundamental disease entities, simply based on estrogen receptor (ER) and human epidermal growth factor receptor 2 (Her2)1 status (i.e. ER+ and/or Her2+, and ERHer2), as the major currently available breast cancer therapeutic options are based on the ability to target these proteins. Hormone receptor positive and hormone receptor negative breast cancers are disease entities with distinct morphological, genetic and biological behavior (1). Hormone receptor negative tumors, which constitute ∼30% of primary breast cancers, tend to be high-grade, more frequently BRCA1 and TP53 mutated, and, more importantly, are not amenable to endocrine therapy. Her2 is amplified in ∼18–20% of breast cancers, and is more frequently observed in hormone receptor negative tumors. Her2 amplification is associated with worse prognosis (higher rate of recurrence and mortality) in patients with newly diagnosed breast cancer who do not receive any adjuvant systemic therapy. Her2 status is also predictive for several systemic therapies, particularly for agents that target Her2. The development of a humanized monoclonal antibody against Her2 (trastuzumab) has resulted in reduction of the risk of recurrence and mortality in patients with Her2 amplification (2, 3). Although trastuzumab is considered one of the most effective targeted therapies currently available in oncology, a significant number of patients with Her2-overexpressing breast cancer do not benefit from it (4, 5).Breast tumors that do not express ER, PgR, or Her2 (ER PgR Her2), as determined by immunohistochemistry (IHC), are generally referred to as triple negative breast cancers (TNBCs), and they are not candidates for targeted therapies (endocrine therapy or trastuzumab). Although TNBCs account for a relatively small proportion of breast cancer cases (10–15%), they are responsible for a disproportionate number of breast cancer deaths. TNBC tumors form a recognizable prognostic group of breast cancer with aggressive behavior that currently lacks the benefit of available systemic therapy (68). Given the need to develop molecular criteria to reproducibly categorize molecular breast tumor subtypes at the protein level and the lack of targeted therapies available to treat patients bearing TNBCs, we have implemented a systematic proteomics approach to identify, characterize, and evaluate proteins present in triple-negative tumors that could constitute an appropriate therapeutic target for the clinical management of this group of patients. To this end, based on the analysis of 78 individual TNBC samples, we have established a large, cumulative, 2D-PAGE database of proteins expressed by TNBCs, including some that could be of potential therapeutic value. Comparison of this TNBC protein database with protein databases of other breast cancer subtypes previously established by our laboratory allowed us to single out a number of proteins preferentially expressed in TNBCs for which targeted therapeutics exist. In this report we further focused on the characterization of one such target, the cancer/testis antigen, melanoma-associated antigen 4 - Mage-A4.Cancer/testis antigens (CTAs) are expressed in a large variety of tumor types, whereas their expression in normal tissues is restricted to male germ cells, which are immune-privileged because of their lack of or low expression of human leukocyte antigen (HLA) molecules (9). Several studies have shown the existence of natural cellular and humoral responses against some CTAs, indicating that they are appropriate targets for vaccine-based cancer immunotherapy (1012). So far, the use of CTAs in immunotherapeutic approaches to cancer treatment has been tested in more than 60 early phase clinical trials, with varying success, and a few candidate products have reached late-stage clinical trials. One such candidate vaccine, Astuprotimut-R (GSK-249553), a Mage-A3 antigen-specific cancer immunotherapeutic agent, is currently under clinical evaluation by GlaxoSmithKline in the largest-ever treatment trial in lung cancer, called MAGRIT (Mage-A3 as Adjuvant nonsmall cell lunG canceR ImmunoTherapy) (13).At present, CTAs comprise about 150 members, more than half of which are encoded by large, recently expanded families on chromosome X (14; see also CTDatabase at www.cta.lncc.br; last accessed 01.09.2012). These genes are organized into clusters and have undergone rapid evolution, possibly because of positive selection. The biological functions of CTAs are not fully understood, but emerging evidence suggest that they direct the proliferation, differentiation, and survival of human germ line cells and may have similar effect in cancer cells. Mage-A4 protein belongs to the Mage-A family of CT antigens. The Mage-A family is composed by 12 proteins (14, 15) and many members of the Mage-A family of CTAs have been associated with cancer, including breast cancer (14, 16, 17). However, past studies reported mostly on MAGE genes rather than protein expression, or on the expression of Mage protein families and not on any given specific protein.In this paper we describe the identification of Mage-A4 in breast tumor biopsies using 2D PAGE coupled with MS proteomics, and follow the protein localization from the tumor cells, to the tumor microenvironment, and to the serum of a patient. Using a three-tier orthogonal technology approach that combined 2D PAGE silver staining coupled with MS, with 2D Western blotting, and IHC, we showed that high level Mage-A4 expression in breast tumors occurs almost exclusively in the receptor negative disease (TNBC and Her2+ERPgR). The existence of immunotherapeutic approaches targeting MAGE protein family members (Mage-A4 specific or with broader specificity) and the fact that we were able to detect its presence in serum suggest novel management options for patients bearing Mage-A4 positive TNBCs and Her2+ERPgR tumors.  相似文献   
63.
The relationship between species and habitat is important in ecosystem-based fisheries management. Habitat suitability index (HSI) modeling is a valuable tool in ecology and can be used to describe the relationship between fish abundance and ecological variables in order to estimate the suitability of specific habitats. In the present study, an HSI model was applied to determine suitable habitats for the Caspian kutum (Rutilus frisii kutum), an important commercial species in the southern Caspian Sea. An arithmetic mean model (AMM) was found to be the most appropriate model for describing the relationship between two of the environmental variables investigated (depth and benthos biomass). However, a geometric mean model explained the evident relationship when all four environmental variables were used (depth, benthos biomass, photosynthetically active radiation and sea surface temperature). The areas with an HSI > 0.5 had over 85 % of the total catch indicating the reliability of the prediction of the Caspian kutum habitat using the AMM. The present study showed that depth and substrate structure are the most important environmental variables for the Caspian kutum to select its habitats, and between remotely sensed data, chlorophyll a, photosynthetically active radiation and sea surface temperature are the most critical parameters for near real-time prediction of the Caspian kutum habitat.  相似文献   
64.
65.
The profile hidden Markov model (PHMM) is widely used to assign the protein sequences to their respective families. A major limitation of a PHMM is the assumption that given states the observations (amino acids) are independent. To overcome this limitation, the dependency between amino acids in a multiple sequence alignment (MSA) which is the representative of a PHMM can be appended to the PHMM. Due to the fact that with a MSA, the sequences of amino acids are biologically related, the one-by-one dependency between two amino acids can be considered. In other words, based on the MSA, the dependency between an amino acid and its corresponding amino acid located above can be combined with the PHMM. For this purpose, the new emission probability matrix which considers the one-by-one dependencies between amino acids is constructed. The parameters of a PHMM are of two types; transition and emission probabilities which are usually estimated using an EM algorithm called the Baum-Welch algorithm. We have generalized the Baum-Welch algorithm using similarity emission matrix constructed by integrating the new emission probability matrix with the common emission probability matrix. Then, the performance of similarity emission is discussed by applying it to the top twenty protein families in the Pfam database. We show that using the similarity emission in the Baum-Welch algorithm significantly outperforms the common Baum-Welch algorithm in the task of assigning protein sequences to protein families.  相似文献   
66.
Study of the fruit fly, Drosophila melanogaster, has yielded important insights into the underlying molecular mechanisms of learning and memory. Courtship conditioning is a well-established behavioral assay used to study Drosophila learning and memory. Here, we describe the development of software to analyze courtship suppression assay data that correctly identifies normal or abnormal learning and memory traits of individual flies. Development of this automated analysis software will significantly enhance our ability to use this assay in large-scale genetic screens and disease modeling. The software increases the consistency, objectivity, and types of data generated.  相似文献   
67.
The enteric nervous system is a vast network of neurons and glia running the length of the gastrointestinal tract that functionally controls gastrointestinal motility. A procedure for the isolation and culture of a mixed population of neurons and glia from the myenteric plexus is described. The primary cultures can be maintained for over 7 days, with connections developing among the neurons and glia. The longitudinal muscle strip with the attached myenteric plexus is stripped from the underlying circular muscle of the mouse ileum or colon and subjected to enzymatic digestion. In sterile conditions, the isolated neuronal and glia population are preserved within the pellet following centrifugation and plated on coverslips. Within 24-48 hr, neurite outgrowth occurs and neurons can be identified by pan-neuronal markers. After two days in culture, isolated neurons fire action potentials as observed by patch clamp studies. Furthermore, enteric glia can also be identified by GFAP staining. A network of neurons and glia in close apposition forms within 5 - 7 days. Enteric neurons can be individually and directly studied using methods such as immunohistochemistry, electrophysiology, calcium imaging, and single-cell PCR. Furthermore, this procedure can be performed in genetically modified animals. This methodology is simple to perform and inexpensive. Overall, this protocol exposes the components of the enteric nervous system in an easily manipulated manner so that we may better discover the functionality of the ENS in normal and disease states.  相似文献   
68.

Background

Helminth infections are proposed to have immunomodulatory activities affecting health outcomes either detrimentally or beneficially. We evaluated the effects of albendazole treatment, every three months for 21 months, on STH, malarial parasitemia and allergy.

Methods and Findings

A household-based cluster-randomized, double-blind, placebo-controlled trial was conducted in an area in Indonesia endemic for STH. Using computer-aided block randomization, 481 households (2022 subjects) and 473 households (1982 subjects) were assigned to receive placebo and albendazole, respectively, every three months. The treatment code was concealed from trial investigators and participants. Malarial parasitemia and malaria-like symptoms were assessed in participants older than four years of age while skin prick test (SPT) to allergens as well as reported symptoms of allergy in children aged 5–15 years. The general impact of treatment on STH prevalence and body mass index (BMI) was evaluated. Primary outcomes were prevalence of malarial parasitemia and SPT to any allergen. Analysis was by intention to treat. At 9 and 21 months post-treatment 80.8% and 80.1% of the study subjects were retained, respectively. The intensive treatment regiment resulted in a reduction in the prevalence of STH by 48% in albendazole and 9% in placebo group. Albendazole treatment led to a transient increase in malarial parasitemia at 6 months post treatment (OR 4.16(1.35–12.80)) and no statistically significant increase in SPT reactivity (OR 1.18(0.74–1.86) at 9 months or 1.37 (0.93–2.01) 21 months). No effect of anthelminthic treatment was found on BMI, reported malaria-like- and allergy symptoms. No adverse effects were reported.

Conclusions

The study indicates that intensive community treatment of 3 monthly albendazole administration for 21 months over two years leads to a reduction in STH. This degree of reduction appears safe without any increased risk of malaria or allergies.

Trial Registration

Controlled-Trials.com ISRCTN83830814  相似文献   
69.

Background

Light-emitting diode fluorescence microscopy (LED-FM) has been shown to be more sensitive than conventional bright field microscopy using Ziehl-Neelsen (ZN) stain in detecting sputum smear positive tuberculosis in controlled laboratory conditions. In 2012, Auramine O staining based LED-FM replaced conventional ZN microscopy in 200 designated microscopy centres (DMC) of medical colleges operating in collaboration with India’s Revised National Tuberculosis Control Programme. We aimed to assess the impact of introduction of LED-FM services on sputum smear positive case detection under program conditions.

Methods

This was a before and after comparison study. In 15 randomly selected medical college DMCs, all presumptive TB patients who underwent sputum smear examination in the years 2011 (before LED-FM) and 2012 (after LED-FM) were compared. An additional 15 comparable DMCs that implemented conventional ZN sputum smear microscopy were also selected for comparison between 2011 and 2012.

Results

The proportion of presumptive TB patients (PTP)found sputum smear positive increased by 30%- from 13.6% (3432/25159) in 2011 to 17.8% (4706/26426) in 2012 (P value <0.01) in the sites that implemented LED-FM microscopy, whereas in DMCs where the ZN staining procedure is followed the proportion of sputum smear positive had remained unchanged (13.0%versus 12.6%;P value0.31).

Conclusion

Use of LED-FM significantly increased the proportion of smear positive cases among presumptive TB patients under routine program conditions in high workload laboratories. The study provides operational evidence needed to scale-up the use of LED-FM in similar settings in India and beyond.  相似文献   
70.
ErbB-3 (HER-3) receptor is involved in tumor progression and resistance to therapy. Development of specific inhibitors impairing the activity of ErbB-3 is an attractive tool for cancer therapeutics. MP-RM-1, a murine monoclonal antibody targeting human ErbB-3, has shown anticancer activity in preclinical models. With the aim to provide novel candidates for clinical use, we have successfully generated a humanized version of MP-RM-1. The humanized antibody, named EV20, abrogates both ligand-dependent and ligand-independent receptor signaling of several tumor cell types, strongly promotes ErbB-3 down-regulation, and efficiently and rapidly internalizes into tumor cells. Furthermore, treatment with EV20 significantly inhibits growth of xenografts originating from prostatic, ovarian, and pancreatic cancers as well as melanoma in nude mice. In conclusion, we provide a novel candidate for ErbB-3-targeted cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号