首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4265篇
  免费   64篇
  国内免费   4篇
  4333篇
  2024年   26篇
  2023年   43篇
  2022年   131篇
  2021年   172篇
  2020年   169篇
  2019年   272篇
  2018年   230篇
  2017年   155篇
  2016年   189篇
  2015年   193篇
  2014年   278篇
  2013年   354篇
  2012年   368篇
  2011年   332篇
  2010年   183篇
  2009年   148篇
  2008年   165篇
  2007年   197篇
  2006年   140篇
  2005年   116篇
  2004年   85篇
  2003年   105篇
  2002年   85篇
  2001年   18篇
  2000年   15篇
  1999年   17篇
  1998年   14篇
  1997年   16篇
  1996年   8篇
  1995年   9篇
  1994年   7篇
  1993年   4篇
  1992年   10篇
  1991年   6篇
  1990年   5篇
  1989年   5篇
  1988年   9篇
  1987年   6篇
  1986年   7篇
  1984年   5篇
  1983年   4篇
  1980年   2篇
  1979年   4篇
  1977年   2篇
  1976年   2篇
  1975年   5篇
  1972年   2篇
  1970年   2篇
  1966年   3篇
  1961年   2篇
排序方式: 共有4333条查询结果,搜索用时 20 毫秒
191.
All of the α-subgroups share similarity in their sequence and structure but different in the toxicity to various voltage-gated sodium channels (VGSCs). We modeled the first 3D structural model of the Od1 based on BmK M1 using homology modeling. The reliability of model for more investigation and compare to BmK M1 has been examined and confirmed. Then the model structure is further refined by energy minimization and molecular dynamics methods. The purpose of this modeling and simulation is comparison toxicity of two mentioned toxins by investigation structural feature of functional regions including core domain, 5-turn and C-terminal which make NC domain. In the one hand, it is intriguing that Od1 in comparison to BmK M1 shows same solvent accessible surface area (SASA) in 5-turn region but a little more exposed and feasibility (more SASA) in C-terminal region and key functional residues of C-terminal such as positive residues Arg58, lys62 and Arg (His)64. These data suggested that Od1 has similarity with BmK M1 but has more toxicity to sodium channel. In the other hand 5-turn proximity of C-terminal to 5-turn in BmK M1with cis peptide bond is less than Od1 without cis peptide bond which is a confirmation with experimental data about BmK M1.A better understanding of the 3-D structure of Od1and comparison to BmK M1 will be helpful for more investigation of functional characters action of natural toxins with a specialized role for VGSCs.  相似文献   
192.
A gold(III) complex possessing 5,6-dimethyl-1,10-phenanthroline (5,6DMP) was synthesized and fully characterized using standard spectroscopic techniques, as well as X-ray crystallography and elemental analysis. The complex [(5,6DMP)AuCl2][BF4] (2) was found to possess a distorted square planar geometry about the gold(III) center, commonplace for d8 Au(III) cations possessing sterically un-hindered polypyridyl ligands. Compound 2 was evaluated for its potential use as an anticancer therapeutic. It was determined that the complex is stable in phosphate buffer over a 24-hour period, thought it does undergo rapid reduction in the presence of equimolar amounts of reduced glutathione (GSH) and ascorbic acid. The DNA binding and in vitro tumor cytotoxicity of the title compound 2 were also determined. It was found to undergo weak and reversible binding to calf thymus DNA, and was more cytotoxic towards a panel of human cancer cell lines than the commonly used chemotherapy agent cisplatin. Cytotoxicity experiments with the free 5,6DMP ligand indicate that the ligand has IC50 values that are slightly lower than those observed for the gold complex (2), and coupled with the fact that the ligand appears to be released from the gold(III) metal center in reducing environments, this suggests the ligand itself may play an important role in the antitumor activity of the parent gold complex.  相似文献   
193.
    
Myocardial infarction (MI) is a major cause of morbidity and mortality worldwide. Until recently, it was thought that myocardium was not able to repair itself, but studies have now shown that resident cardiac stem cells have regenerative capacity, and stem cell therapy may be a novel approach for cardiac muscle repair and regeneration. Stem cell-derived paracrine factors have been shown to regulate ventricular remodeling, inflammation, apoptosis, cardiomyocytes regeneration, and neovascularization in regions of infarcted cardiac tissue. In this review, we summarize the evidence from cellular, animal, and clinical studies supporting the potential clinical significance of stem cell therapy as a novel therapeutic approach for the treatment of MI.  相似文献   
194.
    
The human epidermal growth factor 2 (HER2) gene undergoes various mutations that could alter its activity or respond to the antibody therapies. Cetuximab, a known anti-EGFR monoclonal antibody (mAB), is widely administered in metastatic colorectal cancer (mCRC) cases. Here we identified mCRC patients who did not respond to cetuximab (500 mg/m2, q2w) after fluoropyrimidine/oxaliplatin regimen failure. Tumor samples were examined with immunohistochemistry for protein distribution, polymerase chain reaction (PCR) sequencing for mutation detection and real-time PCR for mRNA expression pattern analysis between cetuximab sensitive and resistance patients. The conformational differences of normal and mutated protein structures were predicted by bioinformatics analysis. The 5-year survival rates of target groups were estimated using the Kaplan–Meier method. Immunohistochemistry showed that all cases had high level of HER2 protein. No K-Ras or B-Raf mutation was observed among the study population; however, cetuximab resistance patients harbored a somatic mutation R784G at the exon 20 region of HER2 coding sequence. According to bioinformatics analysis, this mutation caused a notable misfold in protein conformation. Meanwhile, survival analysis showed R784G mutated mCRC patients had shortened survival rate compared with the mCRC cases with wild-type HER2. Collectively, these data report a new mechanism of resistance to cetuximab and might be applicable in modifying new therapeutic strategies for HER2 involved cancers.  相似文献   
195.
196.
Stress-strain experiments on individual collagen fibrils   总被引:1,自引:0,他引:1  
Collagen, a molecule consisting of three braided protein helices, is the primary building block of many biological tissues including bone, tendon, cartilage, and skin. Staggered arrays of collagen molecules form fibrils, which arrange into higher-ordered structures such as fibers and fascicles. Because collagen plays a crucial role in determining the mechanical properties of these tissues, significant theoretical research is directed toward developing models of the stiffness, strength, and toughness of collagen molecules and fibrils. Experimental data to guide the development of these models, however, are sparse and limited to small strain response. Using a microelectromechanical systems platform to test partially hydrated collagen fibrils under uniaxial tension, we obtained quantitative, reproducible mechanical measurements of the stress-strain curve of type I collagen fibrils, with diameters ranging from 150-470 nm. The fibrils showed a small strain (epsilon < 0.09) modulus of 0.86 +/- 0.45 GPa. Fibrils tested to strains as high as 100% demonstrated strain softening (sigma(yield) = 0.22 +/- 0.14 GPa; epsilon(yield) = 0.21 +/- 0.13) and strain hardening, time-dependent recoverable residual strain, dehydration-induced embrittlement, and susceptibility to cyclic fatigue. The results suggest that the stress-strain behavior of collagen fibrils is dictated by global characteristic dimensions as well as internal structure.  相似文献   
197.
198.
ObjectivePhosphorous is an essential micronutrient of plants and involved in critical biological functions. In nature, phosphorous is mostly present in immobilized inorganic mineral and in the fixed organic form including phytic acid and phosphoesteric compounds. However, the bioavailability of bound phosphorous could be enhanced by the use of phosphate solubilizing microorganisms such as bacteria and fungi. The phytases are widespread in an environment and have been isolated from different sources comprising bacteria and fungi.MethodologyIn current studies, we show the successful use of gamma rays and EMS (Ethyl Methane Sulphonate) mutagenesis for enhanced activity of phytases in a fungal strain Sporotrichum thermophile.ResultsWe report an improved strain ST2 that could produce a clear halo zone around the colony, up to 24 mm. The maximum enzymatic activity was found of 382 U/mL on pH 5.5. However, the phytase activity was improved to 387 U/ml at 45 °C. We also report that the mutants produced through EMS showed the greater potential for phytase production.ConclusionThe current study highlights the potential of EMS mutagenesis for strain improvement over physical mutagens.  相似文献   
199.
Vibrio parahaemolyticus is a major pathogen that is mainly associated with seafood and is a global food safety issue. Our objective was to isolate and completely sequence a specific phage against this bacterium. Phage vB_VpaM_MAR is able to lyse 76% of the V. parahaemolyticus strains tested. MAR belongs to the Myoviridae family and has a genome comprised of double-stranded DNA with a size of 41,351 bp, a G+C content of 51.3%, and 62 open reading frames (ORFs). Bioinformatic analysis showed that phage MAR is closely related to Vibrio phages VHML, VP58.5, and VP882 and Halomonas aquamarina phage ΦHAP-1.  相似文献   
200.
Ligand-induced down-regulation controls the signaling potency of the epidermal growth factor receptor (EGFR/ErbB1). Overexpression studies have identified Cbl-mediated ubiquitinylation of EGFR as a mechanism of ligand-induced EGFR down-regulation. However, the role of endogenous Cbl in EGFR down-regulation and the precise step in the endocytic pathway regulated by Cbl remain unclear. Using Cbl-/- mouse embryonic fibroblast cell lines, we demonstrate that endogenous Cbl is essential for ligand-induced ubiquitinylation and efficient degradation of EGFR. Further analyses using Chinese hamster ovary cells with a temperature-sensitive defect in ubiquitinylation confirm a crucial role of the ubiquitin machinery in Cbl-mediated EGFR degradation. However, internalization into early endosomes did not require Cbl function or an intact ubiquitin pathway. Confocal immunolocalization studies indicated that Cbl-dependent ubiquitinylation plays a critical role at the early endosome to late endosome/lysosome sorting step of EGFR down-regulation. These findings establish Cbl as the major endogenous ubiquitin ligase responsible for EGFR degradation, and show that the critical role of Cbl-mediated ubiquitinylation is at the level of endosomal sorting, rather than at the level of internalization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号