首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3990篇
  免费   252篇
  国内免费   8篇
  2024年   7篇
  2023年   35篇
  2022年   114篇
  2021年   162篇
  2020年   164篇
  2019年   262篇
  2018年   228篇
  2017年   155篇
  2016年   188篇
  2015年   192篇
  2014年   276篇
  2013年   350篇
  2012年   366篇
  2011年   332篇
  2010年   182篇
  2009年   148篇
  2008年   164篇
  2007年   197篇
  2006年   140篇
  2005年   116篇
  2004年   85篇
  2003年   105篇
  2002年   85篇
  2001年   18篇
  2000年   15篇
  1999年   17篇
  1998年   14篇
  1997年   16篇
  1996年   8篇
  1995年   9篇
  1994年   7篇
  1993年   4篇
  1992年   10篇
  1991年   6篇
  1990年   5篇
  1989年   5篇
  1988年   9篇
  1987年   6篇
  1986年   7篇
  1984年   5篇
  1983年   4篇
  1980年   2篇
  1979年   4篇
  1977年   2篇
  1976年   2篇
  1975年   5篇
  1972年   2篇
  1970年   2篇
  1966年   3篇
  1961年   2篇
排序方式: 共有4250条查询结果,搜索用时 218 毫秒
131.
The present study aimed at evaluating the ability of some isolated cyanobacterial and microalgal strains for the removal of ρ-chlorophenol (ρ-CP), an environmentally harmful contaminant. To identify the most efficient species, a screening program was carried out using 15 microalgal and cyanobacterial strains. Among them, Tetraselmis suecica was able to remove 67 % of the ρ-chlorophenol at an initial concentration of 20 mg L?1 from the medium within a 10-day period. The efficacy of the process was dependent on the ρ-chlorophenol concentration. At concentrations above 60 mg L?1 of the pollutant, no removal was observed due to the inhibitory effect of ρ-chlorophenol on the T. suecica cells. The effect of cell immobilization in alginate beads on T. suecica removal capacity was also examined. Using this technique, the removal efficacy for the initial ρ-CP concentration of 20 mg L?1 increased up to 94 %.  相似文献   
132.
Holt-Oram syndrome (HOS) is a developmental disorder inherited in an autosomal-dominant pattern. Affected organs are the heart and forelimbs with upper extremity skeletal defects and congenital heart malformation. In this study we present three cases of HOS in the same family. In one of these three individuals we detected a transition of C to T (CTG-GTT, V205V) in exon 7 of the TBX5 gene. This nucleotide change causes no amino acid change and potential pathologic effects remain unknown.Key Words: Holt-Oram syndrome, Congenital heart malformation, TBX5 gene  相似文献   
133.

Background

Long-term and unresolved airway inflammation and airway remodeling, characteristic features of chronic asthma, if not treated could lead to permanent structural changes in the airways. Aldose reductase (AR), an aldo-sugar and lipid aldehyde metabolizing enzyme, mediates allergen-induced airway inflammation in mice, but its role in the airway remodeling is not known. In the present study, we have examined the role of AR on airway remodeling using ovalbumin (OVA)-induced chronic asthma mouse model and cultured human primary airway epithelial cells (SAECs) and mouse lung fibroblasts (mLFs).

Methods

Airway remodeling in chronic asthma model was established in mice sensitized and challenged twice a week with OVA for 6 weeks. AR inhibitor, fidarestat, was administered orally in drinking water after first challenge. Inflammatory cells infiltration in the lungs and goblet cell metaplasia, airway thickening, collagen deposition and airway hyper-responsiveness (AHR) in response to increasing doses of methacholine were assessed. The TGFβ1-induced epithelial-mesenchymal transition (EMT) in SAECs and changes in mLFs were examined to investigate AR-mediated molecular mechanism(s) of airway remodeling.

Results

In the OVA-exposed mice for 6 wks inflammatory cells infiltration, levels of inflammatory cytokines and chemokines, goblet cell metaplasia, collagen deposition and AHR were significantly decreased by treatment with AR inhibitor, fidarestat. Further, inhibition of AR prevented TGFβ1-induced altered expression of E-cadherin, Vimentin, Occludin, and MMP-2 in SAECs, and alpha-smooth muscle actin and fibronectin in mLFs. Further, in SAECs, AR inhibition prevented TGFβ1- induced activation of PI3K/AKT/GSK3β pathway but not the phosphorylation of Smad2/3.

Conclusion

Our results demonstrate that allergen-induced airway remodeling is mediated by AR and its inhibition blocks the progression of remodeling via inhibiting TGFβ1-induced Smad-independent and PI3K/AKT/GSK3β-dependent pathway.  相似文献   
134.
135.
136.
137.
The effect of alkali metal oxides M n O (M?=?Li, Na, K; n?=?2, 3, 4) on the geometric, electronic, and linear and nonlinear optical properties of the Mg12O12 nanocage was investigated by density-functional-based methods. According to the computational results, these alkali metal oxides are adsorbed on the Mg12O12 nanocage because this adsorption reduces its energy gap. The static first hyperpolarizability (β 0) of the nanocage is dramatically increased in the presence of the alkali metal oxides, with the greatest increase seen in the presence of the superalkalis (i.e., M3O; M?=?Li, Na, and K). The highest first hyperpolarizability (β 0?≈?600,000 a.u.) was calculated for K3O@Mg12O12, which was considerably more than that for Mg12O12. The thermodynamic properties and relative stabilities of these inorganic compounds are discussed.
Graphical Abstract Optimized structure and DOS spectrum of K3O(e@Mg12O12)
  相似文献   
138.
Papaver bracteatum, a perennial species, has been known as a rich source of thebaine and a potential alternative to Papaver somniferum for the production of codeine and some semisynthetic antagonist drugs. In this study, ion mobility spectrum (IMS) of the root, leaf, bottom part of stem, upper part of stem, capsule wall, petal, and capsule content during developmental stages of P. bracteatum including annual rosette, perennial rosette, bud initiation, pendulous bud, preflowering, and lancing were investigated. The IMS revealed thebaine, papaverine, and noscapine as the major components of the extracted alkaloids. Based on the results of the study it appears that, at least in part, there is a competition among the biosynthesis pathways of papaverine, noscapine, and morphinan alkaloids from a common source . Root and capsule wall were the most potent organs for extraction of thebaine, while lancing stage was the best developmental stage for thebaine exploitation. However, it seems that total biomass of root and capsule wall plays a key role in the final selection of favorite organ. Although papaverine and noscapine in the stem at preflowering stage had the most quantity, significant amounts were found in the capsule wall. In general, total alkaloid content of leaf was lower than the other plant parts.  相似文献   
139.
In the present research, variability in essential oil (EO) composition of five Dorema aucheri populations collected from natural habitats in different regions of Iran, were investigated. The EO content of populations varied from 0.28 to 0.68%. According to gas chromatography/mass spectrometry analysis, β‐caryophyllene (7.17 – 35.73%), thymol (23.45 – 29.64%), β‐gurjunene (2.58 – 5.89%), carvacrol (1.32 – 2.67%) and cuparene (1.97 – 2.98%) were the major components. Hierarchical cluster, principal component and canonical correspondence analyses classified the studied populations into three groups based on major EO components. The environmental parameters of the collected sites were also evaluated. According to the results, it might be suggested that sandy soils with high mean annual precipitation were major environmental factors influencing the amount of β‐caryophyllene, while thymol, cuparene and caryophyllen oxide increased in silty and clay soils. Finally, the population collected in high altitudes and clay soils had higher amount of β‐gurjunene.  相似文献   
140.
Bioremediation of toxic metals by magnetotactic bacteria and magnetic separation of metal-loaded magnetotactic bacteria are of great interest. This bioprocess technique is rapid, efficient, economical, and environmentally friendly. In this study, cobalt removal potential of a novel isolated magnetotactic bacterium (Alphaproteobacterium MTB-KTN90) as a new biosorbent was investigated. The effects of various environmental parameters in the cobalt removal and the technique of magnetic separation of cobalt-loaded bacterial cells were studied. Cobalt removal by MTB-KTN90 was very sensitive to pH solution; higher biosorption capacity was observed around pH 6.5–7.0. When biomass concentration increased from 0.009 to 0.09 g/l, the biosorption efficiency increased from 13.87 % to 19.22 %. The sorption of cobalt by MTB-KTN90 was rapid during the first 15 min (859.17 mg/g dry weight). With the increasing of cobalt concentrations from 1 to 225 mg/l, the specific cobalt uptake increased. Maximum cobalt removal (1160.51 ± 15.42 mg/g dry weight) took place at optimum conditions; pH 7.0 with initial cobalt concentration of 115 mg/l at 60 min by 0.015 g/l of dry biomass. The results showed maximum values for constants of Langmuir and Freundlich models so far. The biosorption mechanisms were studied with FTIR, PIXE, and FESEM analysis. Cobalt-loaded MTB-KTN90 had ability to separate from solution by a simple magnetic separator. Magnetic response in MTB-KTN90 is due to the presence of unique intracellular magnetic nanoparticles (magnetosomes). The orientation magnetic separation results indicated that 88.55 % of cobalt was removed from solution. Consequently, Alphaproteobacterium MTB-KTN90 as a new biosorbent opens up good opportunities for the magnetic removal of cobalt from the polluted aquatic environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号