全文获取类型
收费全文 | 156篇 |
免费 | 11篇 |
专业分类
167篇 |
出版年
2023年 | 4篇 |
2022年 | 3篇 |
2021年 | 10篇 |
2020年 | 2篇 |
2019年 | 3篇 |
2018年 | 3篇 |
2017年 | 6篇 |
2016年 | 5篇 |
2015年 | 6篇 |
2014年 | 7篇 |
2013年 | 15篇 |
2012年 | 10篇 |
2011年 | 13篇 |
2010年 | 6篇 |
2009年 | 1篇 |
2008年 | 10篇 |
2007年 | 7篇 |
2006年 | 9篇 |
2005年 | 6篇 |
2004年 | 4篇 |
2002年 | 7篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1996年 | 2篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 4篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1975年 | 1篇 |
排序方式: 共有167条查询结果,搜索用时 15 毫秒
21.
Sharmistha Ghosh Samir M. Hamdan Charles C. Richardson 《The Journal of biological chemistry》2010,285(23):18103-18112
The DNA polymerase encoded by bacteriophage T7 has low processivity. Escherichia coli thioredoxin binds to a segment of 76 residues in the thumb subdomain of the polymerase and increases the processivity. The binding of thioredoxin leads to the formation of two basic loops, loops A and B, located within the thioredoxin-binding domain (TBD). Both loops interact with the acidic C terminus of the T7 helicase. A relatively weak electrostatic mode involves the C-terminal tail of the helicase and the TBD, whereas a high affinity interaction that does not involve the C-terminal tail occurs when the polymerase is in a polymerization mode. T7 gene 2.5 single-stranded DNA-binding protein (gp2.5) also has an acidic C-terminal tail. gp2.5 also has two modes of interaction with the polymerase, but both involve the C-terminal tail of gp2.5. An electrostatic interaction requires the basic residues in loops A and B, and gp2.5 binds to both loops with similar affinity as measured by surface plasmon resonance. When the polymerase is in a polymerization mode, the C terminus of gene 2.5 protein interacts with the polymerase in regions outside the TBD. gp2.5 increases the processivity of the polymerase-helicase complex during leading strand synthesis. When loop B of the TBD is altered, abortive DNA products are observed during leading strand synthesis. Loop B appears to play an important role in communication with the helicase and gp2.5, whereas loop A plays a stabilizing role in these interactions. 相似文献
22.
A thermotolerant methylotrophicBacillus sp. (KISRI TM1A, NCIMB 40040), isolated from the Kuwaiti environment and belonging to the group II spore-forming, bacilli, could not be correlated with any knownBacillus sp. It may, therefore, be a new species. It grew at temperatures from 37° to 58°C from pH 6.5 to 9.0 and on methanol up to 40 g l–1. It grew well in a chemostat. Its biomass yield coefficient was improved by about 30% by optimization of medium and growth conditions, reaching a maximum of 0.44g g–1 at 45°C pH 6.8 to 7.0, dilution rate 0.25 h–1 with methanol at 10 g l–1. Average crude protein and amino acid content were 84% and 60%, respectively, and maximum productivity attained under laboratory conditions was 5.06 g l–1h–1. It was concluded that this strain has good potential for use in single-cell protein production. 相似文献
23.
Halwani R Al-Abri J Beland M Al-Jahdali H Halayko AJ Lee TH Al-Muhsen S Hamid Q 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(7):4156-4163
The increase in airway smooth muscle (ASM) mass is a major structural change in asthma. This increase has been attributed to ASM cell (ASMC) hyperplasia and hypertrophy. The distance between ASMC and the epithelium is reduced, suggesting migration of smooth muscle cells toward the epithelium. Recent studies have suggested a role of chemokines in ASMC migration toward the epithelium; however, chemokines have other biological effects. The objective of the current study is to test the hypothesis that chemokines (eotaxin, RANTES, IL-8, and MIP-1α) can directly influence ASMC mass by increasing the rate of proliferation or enhancing the survival of these cells. Human ASMCs were exposed to different concentrations of eotaxin, RANTES, IL-8, or MIP-1α. To test for proliferation, matched control and stimulated ASMC were pulsed with [(3)H]thymidine, or ASMCs were stained with BrdU and then analyzed with flow cytometry. Apoptosis was measured using Annexin V staining and flow cytometry. Expression of phosphorylated p42/p44 and MAPKs was assessed by Western blot. In a concentration-dependent manner, chemokines including eotaxin, RANTES, IL-8, and MIP-1α increased ASMC's [(3)H]thymidine incorporation and DNA synthesis. IL-8, eotaxin, and MIP-1α decreased the rate of apoptosis of ASMCs compared with the matched controls. A significant increase in phosphorylated p42/p44 MAPKs was seen after treating ASMCs with RANTES and eotaxin. Moreover, inhibition of p42/p44 MAPK phosphorylation reduced the level of chemokine-induced ASM proliferation. We conclude that chemokines might contribute to airway remodeling seen in asthma by enhancing the number and survival of ASMCs. 相似文献
24.
Hamdan D El-Readi MZ Tahrani A Herrmann F Kaufmann D Farrag N El-Shazly A Wink M 《Zeitschrift für Naturforschung. C, Journal of biosciences》2011,66(7-8):385-393
Column chromatography of the dichloromethane fraction from an aqueous methanolic extract of fruit peel of Citrus pyriformis Hassk. (Rutaceae) resulted in the isolation of seven compounds including one coumarin (citropten), two limonoids (limonin and deacetylnomilin), and four sterols (stigmasterol, ergosterol, sitosteryl-3-beta-D-glucoside, and sitosteryl-6'-O-acyl-3-beta-D-glucoside). From the ethyl acetate fraction naringin, hesperidin, and neohesperidin were isolated. The dichloromethane extract of the defatted seeds contained three additional compounds, nomilin, ichangin, and cholesterol. The isolated compounds were identified by MS (EI, CI, and ESI), 1H, 13C, and 2D-NMR spectral data. The limonoids were determined qualitatively by LC-ESI/MS resulting in the identification of 11 limonoid aglycones. The total methanolic extract of the peel and the petroleum ether, dichloromethane, and ethyl acetate fractions were screened for their antioxidant and anti-inflammatory activities. The ethyl acetate fraction exhibited a significant scavenging activity for DPPH free radicals (IC50 = 132.3 microg/mL). The petroleum ether fraction inhibited 5-lipoxygenase with IC50 = 30.6 microg/mL indicating potential anti-inflammatory properties. Limonin has a potent cytotoxic effect against COS7 cells [IC50 = (35.0 +/- 6.1) microM] compared with acteoside as a positive control [IC50 = (144.5 +/- 10.96) microM]. 相似文献
25.
26.
Liu He Rebecca Lever Andrew Cubbon Muhammad Tehseen Tabitha Jenkins Alice
O Nottingham Anya Horton Hannah Betts Martin Fisher Samir
M Hamdan Panos Soultanas Edward
L Bolt 《Nucleic acids research》2023,51(4):1740
DNA strand breaks are repaired by DNA synthesis from an exposed DNA end paired with a homologous DNA template. DNA polymerase delta (Pol δ) catalyses DNA synthesis in multiple eukaryotic DNA break repair pathways but triggers genome instability unless its activity is restrained. We show that human HelQ halts DNA synthesis by isolated Pol δ and Pol δ-PCNA-RPA holoenzyme. Using novel HelQ mutant proteins we identify that inhibition of Pol δ is independent of DNA binding, and maps to a 70 amino acid intrinsically disordered region of HelQ. Pol δ and its POLD3 subunit robustly stimulated DNA single-strand annealing by HelQ, and POLD3 and HelQ interact physically via the intrinsically disordered HelQ region. This data, and inability of HelQ to inhibit DNA synthesis by the POLD1 catalytic subunit of Pol δ, reveal a mechanism for limiting DNA synthesis and promoting DNA strand annealing during human DNA break repair, which centres on POLD3. 相似文献
27.
In DNA replication, the antiparallel nature of the parental duplex imposes certain constraints on the activity of the DNA polymerases that synthesize new DNA. The leading-strand polymerase advances in a continuous fashion, but the lagging-strand polymerase is forced to restart at short intervals. In several prokaryotic systems studied so far, this problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki fragment synthesis. The timing of Okazaki fragment synthesis and loop formation is determined by a subtle interplay of enzymatic activities at the fork. Recent developments in single-molecule techniques have enabled the direct observation of these processes and have greatly contributed to a better understanding of the dynamic nature of the replication fork. Here, we will review recent experimental advances, present the current models, and discuss some of the exciting developments in the field. 相似文献
28.
Shewanella oneidensis MR-1 has conventionally been considered unable to use glucose as a carbon substrate for growth. The genome sequence of S. oneidensis MR-1 however suggests the ability to use glucose. Here, we demonstrate that during initial glucose exposure, S. oneidensis MR-1 quickly and frequently gains the ability to utilize glucose as a sole carbon source, in contrast to wild-type S. oneidensis, which cannot immediately use glucose as a sole carbon substrate. High-performance liquid chromatography and (14)C glucose tracer studies confirm the disappearance in cultures and assimilation and respiration, respectively, of glucose. The relatively short time frame with which S. oneidensis MR-1 gained the ability to use glucose raises interesting ecological implications. 相似文献
29.
Interannual variations in needle and sapwood traits of Pinus edulis branches under an experimental drought 下载免费PDF全文
Marceau Guérin Dario Martin‐Benito Georg von Arx Laia Andreu‐Hayles Kevin L. Griffin Rayann Hamdan Nate G. McDowell Robert Muscarella William Pockman Pierre Gentine 《Ecology and evolution》2018,8(3):1655-1672
In the southwestern USA, recent large‐scale die‐offs of conifers raise the question of their resilience and mortality under droughts. To date, little is known about the interannual structural response to droughts. We hypothesized that piñon pines (Pinus edulis) respond to drought by reducing the drop of leaf water potential in branches from year to year through needle morphological adjustments. We tested our hypothesis using a 7‐year experiment in central New Mexico with three watering treatments (irrigated, normal, and rain exclusion). We analyzed how variation in “evaporative structure” (needle length, stomatal diameter, stomatal density, stomatal conductance) responded to watering treatment and interannual climate variability. We further analyzed annual functional adjustments by comparing yearly addition of needle area (LA) with yearly addition of sapwood area (SA) and distance to tip (d), defining the yearly ratios SA:LA and SA:LA/d. Needle length (l) increased with increasing winter and monsoon water supply, and showed more interannual variability when the soil was drier. Stomatal density increased with dryness, while stomatal diameter was reduced. As a result, anatomical maximal stomatal conductance was relatively invariant across treatments. SA:LA and SA:LA/d showed significant differences across treatments and contrary to our expectation were lower with reduced water input. Within average precipitation ranges, the response of these ratios to soil moisture was similar across treatments. However, when extreme soil drought was combined with high VPD, needle length, SA:LA and SA:LA/d became highly nonlinear, emphasizing the existence of a response threshold of combined high VPD and dry soil conditions. In new branch tissues, the response of annual functional ratios to water stress was immediate (same year) and does not attempt to reduce the drop of water potential. We suggest that unfavorable evaporative structural response to drought is compensated by dynamic stomatal control to maximize photosynthesis rates. 相似文献
30.
Stuart D C Ward Fadi F Hamdan Lanh M Bloodworth Jürgen Wess 《The Journal of biological chemistry》2002,277(3):2247-2257
The structural changes involved in ligand-dependent activation of G protein-coupled receptors are not well understood at present. To address this issue, we developed an in situ disulfide cross-linking strategy using the rat M(3) muscarinic receptor, a prototypical G(q)-coupled receptor, as a model system. It is known that a tyrosine residue (Tyr(254)) located at the C terminus of transmembrane domain (TM) V and several primarily hydrophobic amino acids present within the cytoplasmic portion of TM VI play key roles in determining the G protein coupling selectivity of the M(3) receptor subtype. To examine whether M3 receptor activation involves changes in the relative orientations of these functionally critical residues, pairs of cysteine residues were substituted into a modified version of the M(3) receptor that contained a factor Xa cleavage site within the third intracellular loop and lacked most endogenous cysteine residues. All analyzed mutant receptors contained a Y254C point mutation and a second cysteine substitution within the segment Lys(484)-Ser(493) at the intracellular end of TM VI. Following their transient expression in COS-7 cells, mutant receptors present in their native membrane environment (in situ) were subjected to mild oxidizing conditions, either in the absence or in the presence of the muscarinic agonist, carbachol. The successful formation of disulfide cross-links was monitored by studying changes in the electrophoretic mobility of oxidized, factor Xa-treated receptors on SDS gels. The observed cross-linking patterns indicated that M(3) receptor activation leads to structural changes that allow the cytoplasmic ends of TM V and TM VI to move closer to each other and that also appear to involve a major change in secondary structure at the cytoplasmic end of TM VI. This is the first study employing an in situ disulfide cross-linking strategy to examine agonist-dependent dynamic structural changes in a G protein-coupled receptor. 相似文献