首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   11篇
  2023年   4篇
  2022年   3篇
  2021年   10篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   5篇
  2015年   7篇
  2014年   7篇
  2013年   16篇
  2012年   11篇
  2011年   13篇
  2010年   6篇
  2009年   1篇
  2008年   10篇
  2007年   7篇
  2006年   9篇
  2005年   6篇
  2004年   4篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
排序方式: 共有171条查询结果,搜索用时 15 毫秒
91.
Vesiculoviruses enter cells by membrane fusion, driven by a large, low‐pH‐induced, conformational change in the fusion glycoprotein G that involves transition from a trimeric pre‐fusion toward a trimeric post‐fusion state via monomeric intermediates. Here, we present the structure of the G fusion protein at intermediate pH for two vesiculoviruses, vesicular stomatitis virus (VSV) and Chandipura virus (CHAV), which is responsible for deadly encephalopathies. First, a CHAV G crystal structure shows two intermediate conformations forming a flat dimer of heterodimers. On virions, electron microscopy (EM) and tomography reveal monomeric spikes similar to one of the crystal conformations. In solution, mass spectrometry shows dimers of G. Finally, mutations at a dimer interface, involving fusion domains associated in an antiparallel manner to form an intermolecular β‐sheet, affect G fusion properties. The location of the compensatory mutations restoring fusion activity strongly suggests that this interface is functionally relevant. This work reveals the range of G structural changes and suggests that G monomers can re‐associate, through antiparallel interactions between fusion domains, into dimers that play a role at some early stage of the fusion process.  相似文献   
92.
Although modest elevations in pacing rate improve cardiac output and induce reflex sympathoinhibition, the threshold rate above which hemodynamic perturbations induce reflex sympathoexcitation remains unknown. Systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressures (MAP) and sympathetic nerve activity (SNA) were measured during normal sinus rhythm (NSR) and atrioventricular (AV) sequential pacing in 25 patients. Pacing was performed at 100, 120, and 140 beats/min with an AV interval of 100 ms. Patients were divided into two groups based on normal or abnormal left ventricular ejection fraction (LVEF): group 1 (n = 11; mean LVEF, 55%) and group 2 (n = 14; mean LVEF, 31%). In group 1, relative to NSR, SBP decreased an average of 2%, 3%, and 8% at 100, 120, and 140 beats/min (P < 0.001), respectively. DBP and MAP increased 9%, 15%, and 15% (P = 0.001) and 3%, 6%, and 5% [P = not significant (NS)], respectively. In group 2, SBP reductions were even greater, with an average decrease of 4%, 8%, and 16% (P < 0.001). Whereas DBP increased 9%, 9%, and 8% at 100, 120, and 140 beats/min (P = NS), MAP increased 3% and 2% at 100 and 120 beats/min but decreased 3% at 140 beats/min (P = 0.001). SNA recordings were obtained in 11 patients (6 in group 1 and 5 in group 2). In group 1, SNA decreased during all rates, with a mean 21% reduction. In group 2, however, SNA decreased at 100 and 120 beats/min (49% and 38%) but increased 24% at 140 beats/min. Patients with depressed LVEF exhibited altered hemodynamic and sympathetic responses to rapid sequential pacing. The implications of these findings in device programming and arrhythmia rate control await future studies.  相似文献   
93.
Overexpression of udk, an Escherichia coli gene encoding a uridine/cytidine kinase, interferes with T7 bacteriophage growth. We show here that inhibition of T7 phage growth by udk overexpression can be overcome by inhibition of host RNA polymerase. Overexpression of gene 2, whose product inhibits host RNA polymerase, restores T7 phage growth on hosts overexpressing udk. In addition, rifampicin, an inhibitor of host RNA polymerase, restores the burst size of T7 phage on udk-overexpressing hosts to normal. In agreement with these findings, suppressor mutants that overcome the inhibition arising from udk overexpression gain the ability to grow on hosts that are resistant to inhibition of RNA polymerase by gene 2 protein, and suppressor mutants that overcome a lack of gene 2 protein gain the ability to grow on hosts that overexpress udk. Mutations that eliminate or weaken strong promoters for host RNA polymerase in T7 DNA, and mutations in T7 gene 3.5 that affect its interaction with T7 RNA polymerase, also reduce the interference with T7 growth by host RNA polymerase. We propose a general model for the requirement of host RNA polymerase inhibition.  相似文献   
94.
The core of DNA polymerase III, the replicative polymerase in Escherichia coli, consists of three subunits (alpha, epsilon, and theta). The epsilon subunit is the 3'-5' proofreading exonuclease that associates with the polymerase (alpha) through its C-terminal region and theta through a 185-residue N-terminal domain (epsilon 186). A spectrophotometric assay for measurement of epsilon activity is described. Proteins epsilon and epsilon 186 and the epsilon 186.theta complex catalyzed the hydrolysis of the 5'-p-nitrophenyl ester of TMP (pNP-TMP) with similar values of k(cat) and K(M), confirming that the N-terminal domain of epsilon bears the exonuclease active site, and showing that association with theta has little direct effect on the chemistry occurring at the active site of epsilon. On the other hand, formation of the complex with theta stabilized epsilon 186 by approximately 14 degrees C against thermal inactivation. For epsilon 186, k(cat) = 293 min(-)(1) and K(M) = 1.08 mM at pH 8.00 and 25 degrees C, with a Mn(2+) concentration of 1 mM. Hydrolysis of pNP-TMP by epsilon 186 depended absolutely on divalent metal ions, and was inhibited by the product TMP. Dependencies on Mn(2+) and Mg(2+) concentrations were examined, giving a K(Mn) of 0.31 mM and a k(cat) of 334 min(-1) for Mn(2+) and a K(Mg) of 6.9 mM and a k(cat) of 19.9 min(-1) for Mg(2+). Inhibition by TMP was formally competitive [K(i) = 4.3 microM (with a Mn(2+) concentration of 1 mM)]. The pH dependence of pNP-TMP hydrolysis by epsilon 186, in the pH range of 6.5-9.0, was found to be simple. K(M) was essentially invariant between pH 6.5 and 8.5, while k(cat) depended on titration of a single group with a pK(a) of 7.7, approaching limiting values of 50 min(-1) at pH <6.5 and 400 min(-1) at pH >9.0. These data are used in conjunction with crystal structures of the complex of epsilon 186 with TMP and two Mn(II) ions bound at the active site to develop insights into the mechanisms of pNP-TMP hydrolysis by epsilon at high and low pH values.  相似文献   
95.
The epsilon subunit of the Escherichia coli replicative DNA polymerase III is the proofreading 3'-5' exonuclease. Structures of its catalytic N-terminal domain (epsilon186) were determined at two pH values (5.8 and 8.5) at resolutions of 1.7-1.8 A, in complex with two Mn(II) ions and a nucleotide product of its reaction, thymidine 5'-monophosphate. The protein structure is built around a core five-stranded beta sheet that is a common feature of members of the DnaQ superfamily. The structures were identical, except for differences in the way TMP and water molecules are coordinated to the binuclear metal center in the active site. These data are used to develop a mechanism for epsilon and to produce a plausible model of the complex of epsilon186 with DNA.  相似文献   
96.
Since drug resistance is a complex and multifactorial event involving activation/repression of multiple biochemical pathways, we used a proteomic approach to study cisplatin resistance and drug response in human tumor cell lines. The cervix squamous cell carcinoma cell line A431 and its cisplatin-resistant subline, A431/Pt, were used as a model system. The experimental set-up involved not just a two-way comparison of the control vs. the drug-resistant cell line, but also an acute cisplatin treatment of both cell lines, leading to a four-way comparison, as follows: 1) A431 vs. A431/Pt cells; 2) A431 vs. A431 cisplatin exposed cells; 3) A431/Pt vs. A431/Pt cisplatin exposed cells; 4) A431 cisplatin exposed cells vs. A431/Pt cisplatin exposed cells. We found modulation of proteins, which could be classified under various categories, such as molecular chaperones (e.g. heat-shock proteins HSP60, HSP90, HSC71, heat-shock cognate 71 kDa protein), Ca2+-binding proteins (e.g. calmodulin, calumenin), proteins involved in drug detoxification (such as peroxiredoxins PRX 2 and PRX 6, and glutathione-S-transferase, GST), anti-apoptotic proteins (such as 14-3-3 switched on in cisplatin-exposed cells) and ion channels (such as VDAC-1, voltage-dependent anion-selective channel). In particular, the basal levels of HSC71 and HSP60 were increased in A431/Pt cells as compared to A431 cells, and cisplatin exposure resulted in up-regulation of HSP60 and HSP90 only in A431 cells. Moreover, cisplatin exposure up-regulated the anti-apoptotic 14-3-3 protein in both cell lines, GST in sensitive cells and PRX6 in A431/Pt cells. These findings are consistent with a constitutive expression of defence factors by resistant cells and with activation by cisplatin of mechanisms acting to protect cells from drug-induced damage. This pattern of response, also observed in parental cells, could reflect an intrinsic resistance of this tumor type.  相似文献   
97.

The aim of this study was to determine the risk and symptoms for obstructive sleep apnea (OSA) among Saudi Arabian adults. This cross-sectional survey among healthy participants was conducted at King Abdulaziz Medical City-Riyadh (KAMC-R). The Berlin Questionnaire (BQ) was used to assess the risk of OSA, and Epworth Sleepiness Scale (ESS) was used to measure excessive daytime sleepiness (EDS) as a manifestation of OSA in participants. The total number of participants was 2095, mean age of the sample was 42.3 (±15.5) years and 848 (40.7%) were females. Using BQ, 31.9% of the participants were classified as high risk for OSA (33.4% among females and 31.1% among males). The risk for OSA increased with age: 19.4% among the young group (≤29 years), 35.2% among the middle-aged (30–59 years), and 41% among the elderly (≥60 years). The risk of symptomatic OSA by combining both BQ and ESS was 7.8% and increased with age (5.5% among the young group, 8.5% among the middle-aged, and 9.7% among the elderly), but there was no difference between gender (8% among females vs. 7.7% among males). This study showed that the risk for OSA is very high, is equal in both genders and it increases with age and obesity.

  相似文献   
98.

Background

Diesel exhaust particles (DEPs) are deposited into the respiratory tract and are thought to be a risk factor for the development of diseases of the respiratory system. In healthy individuals, the timing and mechanisms of respiratory tract injuries caused by chronic exposure to air pollution remain to be clarified.

Methods

We evaluated the effects of chronic exposure to DEP at doses below those found in a typical bus corridor in Sao Paulo (150 μg/m3). Male BALB/c mice were divided into mice receiving a nasal instillation: saline (saline; n = 30) and 30 μg/10 μL of DEP (DEP; n = 30). Nasal instillations were performed five days a week, over a period of 90 days. Bronchoalveolar lavage (BAL) was performed, and the concentrations of interleukin (IL)-4, IL-10, IL-13 and interferon-gamma (INF-γ) were determined by ELISA-immunoassay. Assessment of respiratory mechanics was performed. The gene expression of Muc5ac in lung was evaluated by RT-PCR. The presence of IL-13, MAC2+ macrophages, CD3+, CD4+, CD8+ T cells and CD20+ B cells in tissues was analysed by immunohistochemistry. Bronchial thickness and the collagen/elastic fibers density were evaluated by morphometry. We measured the mean linear intercept (Lm), a measure of alveolar distension, and the mean airspace diameter (D0) and statistical distribution (D2).

Results

DEP decreased IFN-γ levels in BAL (p = 0.03), but did not significantly alter IL-4, IL-10 and IL-13 levels. MAC2+ macrophage, CD4+ T cell and CD20+ B cell numbers were not altered; however, numbers of CD3+ T cells (p ≤ 0.001) and CD8+ T cells (p ≤ 0.001) increased in the parenchyma. Although IL-13 (p = 0.008) expression decreased in the bronchiolar epithelium, Muc5ac gene expression was not altered in the lung of DEP-exposed animals. Although respiratory mechanics, elastic and collagen density were not modified, the mean linear intercept (Lm) was increased in the DEP-exposed animals (p ≤ 0.001), and the index D2 was statistically different (p = 0.038) from the control animals.

Conclusion

Our data suggest that nasal instillation of low doses of DEP over a period of 90 days results in alveolar enlargement in the pulmonary parenchyma of healthy mice.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0172-z) contains supplementary material, which is available to authorized users.  相似文献   
99.
Following the recent disclosure of 3-methyl pyrrole-2,4-dicarboxylic acid 2-propyl ester 4-(1,2,2-trimethyl-propyl) ester as a potent and selective mGluR1 non-competitive antagonist, the use of a doubly (13)C-labeled analogue to identify, and consequently prevent, metabolically labile positions is reported.  相似文献   
100.
A single copy of bacteriophage T7 DNA polymerase and DNA helicase advance the replication fork with a processivity greater than 17,000 nucleotides. Nonetheless, the polymerase transiently dissociates from the DNA without leaving the replisome. Ensemble and single-molecule techniques demonstrate that this dynamic processivity is made possible by two modes of DNA polymerase-helicase interaction. During DNA synthesis the polymerase and the helicase interact at a high-affinity site. In this polymerizing mode, the polymerase dissociates from the DNA approximately every 5000 bases. The polymerase, however, remains bound to the helicase via an electrostatic binding mode that involves the acidic C-terminal tail of the helicase and a basic region in the polymerase to which the processivity factor also binds. The polymerase transfers via the electrostatic interaction around the hexameric helicase in search of the primer-template.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号