首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   13篇
  2024年   2篇
  2023年   1篇
  2022年   2篇
  2021年   12篇
  2020年   6篇
  2019年   4篇
  2018年   6篇
  2017年   7篇
  2016年   8篇
  2015年   12篇
  2014年   17篇
  2013年   16篇
  2012年   27篇
  2011年   21篇
  2010年   22篇
  2009年   13篇
  2008年   23篇
  2007年   16篇
  2006年   18篇
  2005年   4篇
  2004年   17篇
  2003年   10篇
  2002年   8篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   3篇
  1995年   4篇
  1994年   5篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
  1961年   1篇
排序方式: 共有315条查询结果,搜索用时 15 毫秒
121.
Impairment of small intestinal absorption has been described in patients with ulcerative colitis and in animal models of experimental colitis. The pathophysiology of this dysfunction has not been elucidated. The aim of this study was to investigate the effect of chemical colitis on jejunal fluid absorption and determine the role of the enteric nervous system and some putative neurotransmitters. In a rat model of iodoacetamide-induced colitis, jejunal net fluid absorption was evaluated by the in vivo single-pass perfusion technique. The effects of 1) tetrodotoxin (TTX), 2) benzylalkonium chloride (BAC), 3) capsaicin, 4) vasoactive intestinal polypeptide (VIP) antagonism, 5) nitric oxide (NO) synthase (NOS) inhibition, and 6) 5-hydroxytryptamine type 3 and 4 (5-HT(3) and 5-HT(4)) receptor antagonism on the changes in fluid movement were investigated. A significant decrease in jejunal net fluid absorption was found 2 and 4 days after colitis induction: 26 (SD 14) and 28 (SD 19) microl x min(-1) x g dry intestinal wt(-1), respectively [P < 0.0002 compared with sham rats at 61 (SD 6.5) microl x min(-1) x g dry intestinal wt(-1)]. No histological changes were evident in jejunal sections. TTX and BAC reversed this decrease in fluid absorption: 54 (SD 13) and 44 (SD 14) microl x min(-1) x g dry intestinal wt(-1) (P = 0.0005 and P = 0.019, respectively, compared with colitis). Ablation of capsaicin-sensitive primary afferent fibers had a partial effect: 45 (SD 5) microl x min(-1) x g dry intestinal wt(-1) (P = 0.001 and P = 0.003 compared with colitis and sham, respectively). Constitutive and neuronal NOS inhibition and VIP antagonism returned jejunal net fluid absorption to normal values: 66 (SD 19), 61 (SD 5), and 56 (SD 14) microl x min(-1) x g dry intestinal wt(-1), respectively. 5-HT(3) and 5-HT(4) receptor antagonism had no effect. Chemical colitis is associated with a significant decrease in jejunal net fluid absorption. This decrease is neurally mediated and involves VIP- and NO-related mechanisms.  相似文献   
122.
The protein kinase C (PKC) family is an essential signaling mediator in platelet activation and aggregation. However, the relative importance of the major platelet PKC isoforms and their downstream effectors in platelet signaling and function remain unclear. Using isolated human platelets, we report that PKCdelta, but not PKCalpha or PKCbeta, is required for collagen-induced phospholipase C-dependent signaling, activation of alpha(IIb)beta(3), and platelet aggregation. Analysis of PKCdelta phosphorylation and translocation to the membrane following activation by both collagen and thrombin indicates that it is positively regulated by alpha(IIb)beta(3) outside-in signaling. Moreover, PKCdelta triggers activation of the mitogen-activated protein kinase-kinase (MEK)/extracellular-signal regulated kinase (ERK) and the p38 MAPK signaling. This leads to the subsequent release of thromboxane A(2), which is essential for collagen-induced but not thrombin-induced platelet activation and aggregation. This study adds new insight to the role of PKCs in platelet function, where PKCdelta signaling, via the MEK/ERK and p38 MAPK pathways, is required for the secretion of thromboxane A(2).  相似文献   
123.
The objective of this study, based on 20 cases of necrotizing fasciitis of the male genitalia, is to identify the risk factors and prognostic factors of this disease. Most cases of necrotizing fasciitis of the male genitalia occurred in elderly men with a poor socio-economic level including 9 diabetics. There was no identifiable cause in 8 cases (Fournier’s gangrene). All patients underwent surgical excision and systematic antibiotic therapy. This series comprised 5 deaths (25%) in patients over the age of 69 years with extensive lesions and a very poor general state on admission. The outcome of survivors was favourable after a prolonged hospital stay (mean stay: 1 month). The clinical context therefore appears to play an essential role in the development of this disease and its subsequent prognosis, which could be improved by rapid and appropriate prevention and treatment.  相似文献   
124.
125.
We have postulated earlier that the highly branched isoprenoid alkanes, which are distributed widely in many sediments, may have been derived from the corresponding branched polyprenyl phosphates, potentially present in biomembranes in primitive organisms. These polyprenyl-branched polyprenyl phosphates might be derived by a simple alkylation from non-substituted polyprenyl phosphates, which we postulate to be the precursors of all membrane terpenoids. We have now synthesized a series of 6-(poly)prenyl-substituted polyprenyl phosphates and studied the formation of vesicles from these phosphates, as a function of the substituted-chain length, the position of the double bond, and pH. Nine of the branched polyprenyl phosphates containing 20-30 C-atoms do form vesicles at a 'physiological' pH; the lipophilicity/hydrophilicity ratio is as expected an important factor. We have also studied the water permeability through membranes of these branched polyprenyl phosphate vesicles by our stopped-flow/light-scattering method. These highly branched polyprenyl phosphates can more effectively reduce the water permeability than non-substituted polyprenyl phosphates: the vesicles formed by the former are more stable against mechanical stress. This reinforces our hypothesis about the origin of the sedimentary polyprenyl-substituted polyprene hydrocarbons.  相似文献   
126.
In many trees, a short photoperiod (SD) triggers substantial physiological adjustments necessary for over-wintering. We have used transgenic ethylene-insensitive birches (Betula pendula), which express the Arabidopsis ethylene receptor gene ETR1 carrying the dominant mutation etr1-1, to investigate the role of ethylene in SD-induced responses in the shoot apical meristem (SAM). Under SD, the ethylene-insensitive trees ceased elongation growth comparably to the wild-type. In contrast, the formation of terminal buds, which in trees is typically induced by SD, was abolished. However, although delayed, endo-dormancy did eventually develop in the ethylene-insensitive trees. This, together with the rapid resumption of growth in the ethylene-insensitive trees after transfer from non-permissive to permissive conditions suggests that ethylene facilitates the SD-induced terminal bud formation, as well as growth arrest. In addition, apical buds of the ethylene-insensitive birch did not accumulate abscisic acid (ABA) under SD, suggesting interaction between ethylene and ABA signalling in the bud. Alterations in SAM functioning were further exemplified by reduced apical dominance and early flowering in ethylene-insensitive birches. Gene expression analysis of shoot apices revealed that the ethylene-insensitive birch lacked the marked increase in expression of a beta-xylosidase gene typical to the SD-exposed wild-type. The ethylene-dependent beta-xylosidase gene expression is hypothesized to relate to modification of cell walls in terminal buds during SD-induced growth cessation. Our results suggest that ethylene is involved in terminal bud formation and in the timely suppression of SAM activity, not only in the shoot apex, but also in axillary and reproductive meristems.  相似文献   
127.
In plants, nucleobase biochemistry is highly compartmented relying upon a well-regulated and selective membrane transport system. In Arabidopsis two proteins, AtAzg1 and AtAzg2, show substantial amino acid sequence similarity to the adenine-guanine-hypoxanthine transporter AzgA of Aspergillus nidulans. Analysis of single and double mutant lines harboring T-DNA insertion alleles AtAzg1-1 and AtAzg2-1 reveal a marked resistance to growth in the presence of 8-azaadenine and 8-azaguanine but not to other toxic nucleobase analogues. Conversely, yeast strains expressing AtAzg1 and AtAzg2 gain heightened sensitivity to growth on 8-azaadenine and 8-azaguanine. Radio-labeled purine uptake experiments in yeast and in planta confirm the function of AtAzg1 and AtAzg2 as plant adenine-guanine transporters.  相似文献   
128.
Death receptor 5 (DR5) and caspase-8 are major components in the extrinsic apoptotic pathway. The alterations of the expression of these proteins during the metastasis of head and neck squamous cell carcinoma (HNSCC) and their prognostic impact have not been reported. The present study analyzes the expression of DR5 and caspase-8 by immunohistochemistry (IHC) in primary and metastatic HNSCCs and their impact on patient survival. Tumor samples in this study included 100 primary HNSCC with no evidence of metastasis, 100 primary HNSCC with lymph node metastasis (LNM) and 100 matching LNM. IHC analysis revealed a significant loss or downregulation of DR5 expression in primary tumors with metastasis and their matching LNM compared to primary tumors with no evidence of metastasis. A similar trend was observed in caspase-8 expression although it was not statistically significant. Downregulation of caspase-8 and DR5 expression was significantly correlated with poorly differentiated tumors compared to moderately and well differentiated tumors. Univariate analysis indicates that, in HNSCC with no metastasis, higher expression of caspase-8 significantly correlated with better disease-free survival and overall survival. However, in HNSCC with LNM, higher caspase-8 expression significantly correlated with poorer disease-free survival and overall survival. Similar results were also generated when we combined both DR5 and caspase-8. Taken together, we suggest that both DR5 and caspase-8 are involved in regulation of HNSCC metastasis. Our findings warrant further investigation on the dual role of caspase-8 in cancer development.  相似文献   
129.
A hallmark of prion diseases is the conversion of the host-encoded prion protein (PrPC where C is cellular) into an alternatively folded, disease-related isoform (PrPSc, where Sc is scrapie), the accumulation of which is associated with synapse degeneration and ultimately neuronal death. The formation of PrPSc is dependent upon the presence of PrPC in specific, cholesterol-sensitive membrane microdomains, commonly called lipid rafts. PrPC is targeted to these lipid rafts because it is attached to membranes via a glycosylphosphatidylinositol anchor. Here, we show that treatment of prion-infected neuronal cell lines (ScN2a, ScGT1, or SMB cells) with synthetic glycosylphosphatidylinositol analogues, glucosamine-phosphatidylinositol (glucosamine-PI) or glucosamine 2-O-methyl inositol octadecyl phosphate, reduced the PrPSc content of these cells in a dose-dependent manner. In addition, ScGT1 cells treated with glucosamine-PI did not transmit infection following intracerebral injection to mice. Treatment with glucosamine-PI increased the cholesterol content of ScGT1 cell membranes and reduced activation of cytoplasmic phospholipase A2 (PLA2), consistent with the hypothesis that the composition of cell membranes affects key PLA2-dependent signaling pathways involved in PrPSc formation. The effect of glucosamine-PI on PrPSc formation was also reversed by the addition of platelet-activating factor. Glucosamine-PI caused the displacement of PrPC from lipid rafts and reduced expression of PrPC at the cell surface, putative sites for PrPSc formation. We propose that treatment with glucosamine-PI modifies local micro-environments that control PrPC expression and activation of PLA2 and subsequently inhibits PrPSc formation.  相似文献   
130.
BackgroundPharmacogenetics is involved in customizing therapy according to the genetic makeup of an individual, and is applicable for chemotherapy, radiotherapy as well as targeted therapy. Drug metabolizing enzymes (DMEs) involving both phase I, and phase II reactions are widely studied. Our study was involved in whole exome sequencing (WES) of cancer patients, followed by analysis for identifying key variations in DMEs, and associated transporters that have a potential impact on treatment outcome.MethodologyA total of 181 solid tumor patients at stage >/= III were subjected to WES by the SureSelectXT Human All Exon V6 + UTR library preparation kit, and sequencing in the Illumina NextSeq 550 system. Bioinformatics analysis involved use of GATK pipeline, and the variants were further assessed for population frequency, functional impact with annovar insilico algorithms. Further variant information from significant DMEs, and transporters were extracted and analyzed with PharmGKB to assess level of evidence and infer their impact on the pathways involved in drug response.ResultsThe total study cohort of 181 solid tumor patients included 60 males, and 121 females respectively. Among DMEs, deleterious mutation in dihydropyrimidine dehydrogenase (DPYD; rs67376798), solute carrier organic anion transporter family member 1B1 (SLCO1B1*5), and cytochrome P450 2D6 (CYP2D6*10) associated with metabolism of anticancer drugs was detected to be in high frequency of 26%, 21% and 25% respectively.ConclusionOur analysis detected variations in both phase I and phase II DMEs, as well as associated transporter genes which has been documented to reduce drug efficacy, as well as cause grade 3 and 4 toxicity. Our study reiterates the significance of pharmacogenomics in stratifying patients for appropriate therapy regimen focused at better treatment outcome and quality of life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号