首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   445篇
  免费   38篇
  2023年   3篇
  2022年   5篇
  2021年   7篇
  2020年   2篇
  2018年   6篇
  2017年   6篇
  2016年   5篇
  2015年   15篇
  2014年   16篇
  2013年   65篇
  2012年   19篇
  2011年   24篇
  2010年   20篇
  2009年   10篇
  2008年   12篇
  2007年   14篇
  2006年   16篇
  2005年   20篇
  2004年   17篇
  2003年   23篇
  2002年   27篇
  2001年   16篇
  2000年   14篇
  1999年   15篇
  1998年   9篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   8篇
  1991年   8篇
  1990年   6篇
  1989年   6篇
  1988年   8篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
  1970年   1篇
排序方式: 共有483条查询结果,搜索用时 31 毫秒
21.
22.
Among several type cultures that assimilated 1-hexadecene, Corynebacterium equi IFO 3730 was found to best accumulate 1, 2-epoxyhexadecane. The purified product exhibited +9.64 (c = 3.71, n-hexane) and was confirmed to have the (R) absolute configuration by correlating to known analogous compounds. The optical purity was determined to be 100% by PMR measurement of 1-methoxy-2-hexadecanol which was derived stereospecifically from the epoxide. The highest yield (41 % based on consumed 1-hexadecene) was achieved when 2.0% of octane and 0.1 % of Tween 80 were added to the medium containing 0.5 % of the olefin. C. equi also assimilated terminal olefins other than 1-hexadecene and produced the corresponding epoxides from substrates which have carbon chains longer than fourteen.  相似文献   
23.
Streptomyces sp. No. 280 produced several kinds of amylase inhibitors (amylase inhibitor A, B, B' and C). Two amylase inhibitors (designated as AI-A1 and AI-A2) were obtained from an amylase inhibitor A fraction by paper chromatography. AI-A1 inhibited muscle phosphorylase a much more than AI-A2 and was hydrolyzed by sweet potato β-amylase whereas AI-A2 was not. Both amylase inhibitors had a carbohydrate and were hydrolyzed by some kinds of amylases or acids. They lost their inhibitory activity against phosphorylase a after treatment with acids or hog pancreatic α-amylase, but they showed increased inhibitory activity toward porcine small intestinal sucrase.

Both AI-A1 and AI-A2 were composed of glucose and a basic moiety which gave a positive ninhydrin reaction. The molecular weights of AI-A1 and AI-A2 were estimated to be approximately 1300 ? 1500 by gel filtration on a Sephadex G-15 column. The nitrogen content of the amylase inhibitors was found to be about 1.3% by elementary analysis  相似文献   
24.
Two β-glucosidases, G1 and G2, were purified from the culture supernatant of Penicillium herquei Banier and Sartory. Both the purified enzymes were homogeneous on polyacrylamide disc gel electrophoresis. The molecular weights of G1 and G2 were estimated to be 125,000 and 122,000, respectively, by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis. G1 and G2 contained 12.7% and 16.1% carbohydrate as glucose, and had isoelectric points of 5.02 and 5.24, respectively. Both enzymes had optimum pHs of 4.0~4.5 and optimum temperatures at 60°C, but pH - and thermo-stabilities of G1 were higher than those of G2. Both enzymes were active not only on p-nitrophenyl β-d-glucopyranoside, salicin, and the p-glucobioses tested but also on laminarin. CM-Cellulose was a very poor substrate for both enzymes. The activities of G1 toward the substrates except for laminarin and CM-cellulose were apparently higher than those of G2. Both enzymes acted on cellobiose to produce a transfer product.  相似文献   
25.
Animals often show left–right (LR) asymmetry in their body structures. In some vertebrates, the mechanisms underlying LR symmetry breaking and the subsequent signals responsible for LR asymmetric development are well understood. However, in invertebrates, the molecular bases of these processes are largely unknown. Therefore, we have been studying the genetic pathway of LR asymmetric development in Drosophila. The embryonic gut is the first organ that shows directional LR asymmetry during Drosophila development. We performed a genetic screen to identify mutations affecting LR asymmetric development of the embryonic gut. From this screen, we isolated pebble (pbl), which encodes a homolog of a mammalian RhoGEF, Ect2. The laterality of the hindgut was randomized in embryos homozygous for a null mutant of pbl. Pbl is a multi-functional protein required for cytokinesis and the epithelial-to-mesenchymal transition in Drosophila. Consistent with Pbl’s role in cytokinesis, we found reduced numbers of cells in the hindgut epithelium in pbl homozygous embryos. The specific expression of pbl in the hindgut epithelium, but not in other tissues, rescued the LR defects and reduced cell number in embryonic pbl homozygotes. Embryos homozygous for string (stg), a mutant that reduces cell number through a different mechanism, also showed LR defects of the hindgut. However, the reduction in cell number in the pbl mutants was not accompanied by defects in the specification of hindgut epithelial tissues or their integrity. Based on these results, we speculate that the reduction in cell number may be one reason for the LR asymmetry defect of the pbl hindgut, although we cannot exclude contributions from other functions of Pbl, including regulation of the actin cytoskeleton through its RhoGEF activity.  相似文献   
26.
27.
Trolox, a water‐soluble vitamin E analogue has been used as a positive control in Trolox equivalent antioxidant capacity and oxygen radical antioxidant capacity assays due to its high antioxidative effect. In this study, the ex vivo antioxidative effects of Trolox and its concentration in blood and brain microdialysates from rat after administration were evaluated by newly established semi‐microflow injection analysis, chemiluminescence detection and HPLC‐UV. In the administration test, the antioxidative effect of Trolox in blood and brain microdialysates after a single administration of 200 mg/kg of Trolox to rats could be monitored. The antioxidative effects in blood (12.0 ± 2.1) and brain (8.4 ± 2.1, × 103 antioxidative effect % × min) also increased. Additionally, the areas under the curve (AUC)s0–360 (n = 3) for blood and brain calculated with quantitative data were 10.5 ± 1.2 and 9.7 ± 2.5 mg/mL × min, respectively. This result indicates that Trolox transferability through the blood–brain barrier is high. The increase in the antioxidative effects caused by Trolox in the blood and brain could be confirmed because good correlations between concentration and antioxidative effects (r ≥ 0.702) were obtained. The fact that Trolox can produce an antioxidative effect in rat brain was clarified. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
28.
29.
30.
Ciliary beat frequency is primarily regulated by outer arm dyneins (22 S dynein). Chilcote and Johnson (Chilcote, T. J., and Johnson, K. A. (1990) J. Biol. Chem. 256, 17257-17266) previously studied isolated Tetrahymena 22 S dynein, identifying a protein p34, which showed cAMP-dependent phosphorylation. Here, we characterize the molecular biochemistry of p34 further, demonstrating that it is the functional ortholog of the 22 S dynein regulatory light chain, p29, in Paramecium. p34, thiophosphorylated in isolated axonemes in the presence of cAMP, co-purified with 22 S dynein and not with inner arm dynein (14 S dynein). Isolated 22 S dynein containing phosphorylated p34 showed approximately 70% increase in in vitro microtubule translocation velocity compared with its unphosphorylated counterpart. Extracted p34 rebound to isolated 22 S dynein from either Tetrahymena or Paramecium but not to 14 S dynein from either ciliate. Binding of radiolabeled p34 to 22 S dynein was competitive with p29. Phosphorylated p34 was not present in axonemes isolated from a mutant lacking outer arms. Two-dimensional gel electrophoresis followed by phosphorimaging revealed at least five phosphorylated p34-related spots, consistent with multiple phosphorylation sites in p34 or perhaps multiple isoforms of p34. These new features suggest that a class of outer arm dynein light chains including p34 regulates microtubule sliding velocity and consequently ciliary beat frequency through phosphorylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号