首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1454篇
  免费   61篇
  2022年   6篇
  2021年   13篇
  2020年   9篇
  2019年   7篇
  2018年   16篇
  2017年   9篇
  2016年   19篇
  2015年   33篇
  2014年   36篇
  2013年   105篇
  2012年   63篇
  2011年   76篇
  2010年   38篇
  2009年   44篇
  2008年   73篇
  2007年   82篇
  2006年   73篇
  2005年   57篇
  2004年   74篇
  2003年   51篇
  2002年   67篇
  2001年   57篇
  2000年   56篇
  1999年   41篇
  1998年   15篇
  1997年   13篇
  1996年   20篇
  1995年   15篇
  1994年   12篇
  1993年   10篇
  1992年   28篇
  1991年   29篇
  1990年   30篇
  1989年   31篇
  1988年   12篇
  1987年   19篇
  1986年   28篇
  1985年   10篇
  1984年   9篇
  1983年   6篇
  1982年   14篇
  1981年   21篇
  1979年   15篇
  1978年   9篇
  1976年   6篇
  1975年   11篇
  1974年   6篇
  1973年   10篇
  1971年   6篇
  1968年   5篇
排序方式: 共有1515条查询结果,搜索用时 46 毫秒
151.
The measurement of plasma insulin is important for clinical diagnosis of diabetes and for preclinical research of metabolic diseases, especially in rodent models used in drug discovery research for type 2 diabetes. Fasting immunoreactive insulin (F-IRI) concentrations are used to calculate the homeostasis model assessment ratio (HOMA-R), an index of insulin sensitivity. However, even the most sensitive commercially available enzyme-linked immunosorbent assay (ELISA) kits cannot measure the very low F-IRI concentrations in normal rats and mice. Therefore, we sought to develop a new rodent insulin ELISA with greater sensitivity for low F-IRI concentrations. Despite repeated efforts, high-affinity antibodies could not be generated by immunizing mice with mouse insulin (self-antigen). Therefore, we generated two weak monoclonal antibodies (13G4 and 26B2) that were affinity maturated and used to develop a highly sensitive ELISA. The measurement range of the sandwich ELISA with the affinity maturated antibodies (13G4m1 and 26B2m1) was 1.5 to 30,000 pg/ml, and its detection limit was at least 10 times lower than those of commercially available kits. In conclusion, we describe the development of a new ultrasensitive ELISA suitable for measuring very low plasma insulin concentrations in rodents. This ELISA might be very useful in drug discovery research in diabetes.  相似文献   
152.
A novel peroxisome proliferator-activated receptor (PPAR) modulator, Z-551, having both PPARα agonistic and PPARγ antagonistic activities, has been developed for the treatment of obesity and obesity-related metabolic disorders. We examined the effects of Z-551 on obesity and the metabolic disorders in wild-type mice on the high-fat diet (HFD). In mice on the HFD, Z-551 significantly suppressed body weight gain and ameliorated insulin resistance and abnormal glucose and lipid metabolisms. Z-551 inhibited visceral fat mass gain and adipocyte hypertrophy, and reduced molecules involved in fatty acid uptake and synthesis, macrophage infiltration, and inflammation in adipose tissue. Z-551 increased molecules involved in fatty acid combustion, while reduced molecules associated with gluconeogenesis in the liver. Furthermore, Z-551 significantly reduced fasting plasma levels of glucose, triglyceride, free fatty acid, insulin, and leptin. To elucidate the significance of the PPAR combination, we examined the effects of Z-551 in PPARα-deficient mice and those of a synthetic PPARγ antagonist in wild-type mice on the HFD. Both drugs showed similar, but weaker effects on body weight, insulin resistance and specific events provoked in adipose tissue compared with those of Z-551 as described above, except for lack of effects on fasting plasma triglyceride and free fatty acid levels. These findings suggest that Z-551 ameliorates HFD-induced obesity, insulin resistance, and impairment of glucose and lipid metabolisms by PPARα agonistic and PPARγ antagonistic activities, and therefore, might be clinically useful for preventing or treating obesity and obesity-related metabolic disorders such as insulin resistance, type 2 diabetes, and dyslipidemia.  相似文献   
153.
Scytosiphon lomentaria (Scytosiphonaceae, Ectocarpales) is believed to include some cryptic species, particularly in the Pacific. We attempted to delimit these species in Japan using mitochondrial cox1 and cox3 and nuclear ITS2 and the second intron of the centrin gene (cetn‐int2). Fifty‐three cox1+cox3 mitotypes, 26 ITS2 ribotypes and 45 cetn‐int2 haplotypes were found in 107 samples collected from 33 localities in Japan. Based on phylogenetic analyses, similar sequence types were grouped into ten mitogroups, eight ribogroups and six cetn‐int2 haplogroups (sequence‐type groups). From the molecular trees and combinations of the mito‐, ribo‐ and haplogroups, three cryptic species were apparent (Groups I–III). Group I, widely distributed on Pacific coasts, was highly supported by all molecular trees, whereas Groups II (North Pacific) and III (Northwestern Pacific and Australasia) were more closely related to each other. However, sequence‐type‐group combinations that would be characteristic of hybrids between Groups II and III were not detected, suggesting no gene flow between the two Groups. Further investigations of an additional 127 sympatrically growing plants supported the absence of gene flow between Groups II and III. Four samples did not belong to any of the Groups I–III and possibly represent additional species.  相似文献   
154.
The larvicidal activity against Culex pipiens of all stereoisomers of dihydroguaiaretic acid (DGA) and secoisolariciresinol was measured, and these DGAs were found to be potent. Sixteen (-)-DGA derivatives were then newly synthesized to analyze their structure-activity relationship. Two derivatives monohydroxylated at the 3- or 4-position of the 7-phenyl group of DGA induced acute paralytic activity in the mosquitoes. Derivatives with several hydroxyl groups had lower activity than the natural compound, suggesting that hydrophobicity was probably an important factor for their insecticidal activity.  相似文献   
155.
156.
We investigated the interaction of 2,4,6-triiodophenol (TIP), a potent thyroid hormone disrupting chemical, with serum proteins from rainbow trout (Onchorhynchus mykiss), bullfrog (Rana catesbeiana), chicken (Gallus gallus), pig (Sus scrofa domesticus), and rat (Rattus norvegicus) using a [(125)I]TIP binding assay, gel filtration chromatography, and native polyacrylamide gel electrophoresis. [(125)I]TIP bound non-specifically to proteins in trout serum, specifically but weakly to proteins in bullfrog serum, and specifically and strongly to proteins in chicken, pig, and rat serum samples. Candidate TIP-binding proteins included lipoproteins (220-320kDa) in trout, albumin in bullfrog, albumin and transthyretin (TTR) in chicken and pig, and TTR in rat. TTR in the chicken, pig, and rat serum samples was responsible for the high-affinity, low-capacity binding sites for TIP (dissociation constant 2.2-3.5×10(-10)M). In contrast, a weak interaction of [(125)I]TIP with tadpole serum proteins accelerated [(125)I]TIP cellular uptake in vitro. Intraperitoneal injection of [(125)I]TIP in tadpoles revealed that the radioactivity was predominantly accumulated in the gallbladder and the kidney. The differences in the molecular and binding properties of TIP binding proteins among vertebrates would affect in part the cellular availability, tissue distribution and clearance of TIP.  相似文献   
157.
To adapt to waterlogging, maize (Zea mays) forms lysigenous aerenchyma in root cortex as a result of ethylene-promoted programmed cell death (PCD). Respiratory burst oxidase homolog (RBOH) gene encodes a homolog of gp91phox in NADPH oxidase, and has a role in the generation of reactive oxygen species (ROS). Recently, we found that during aerenchyma formation, RBOH was upregulated in all maize root tissues examined, whereas an ROS scavengingrelated metallothionein (MT) gene was downregulated specifically in cortical cells. Together these changes should lead to high accumulations of ROS in root cortex, thereby inducing PCD for aerenchyma formation. As further evidence of the involvement of ROS in root aerenchyma formation, the PCD was inhibited by diphenyleneiodonium (DPI), an NADPH oxidase inhibitor. Based on these results, we propose a model of cortical cell-specific PCD for root aerenchyma formation.Key words: aerenchyma, ethylene, laser microdissection, maize (Zea mays), metallothionein, programmed cell death, reactive oxygen species, respiratory burst oxidase homologIn both wetland and non-wetland plants, lysigenous aerenchyma is formed in roots by creating gas spaces as a result of death and subsequent lysis of some cortical cells, and allows internal transport of oxygen from shoots to roots under waterlogged soil conditions.13 In rice (Oryza sativa) and some other wetland plant species, lysigenous aerenchyma is constitutively formed under aerobic conditions, and is further enhanced under waterlogged conditions.4 On the other hand, in non-wetland plants, including maize (Zea mays), lysigenous aerenchyma does not normally form under well-drained soil conditions, but is induced by waterlogging.5 Ethylene is involved in lysigenous aerenchyma formation,13,6,7 but the molecular mechanisms are unclear.We recently identified two reactive oxygen species (ROS)-related genes that were specifically regulated in maize root cortex by waterlogged conditions, but not in the presence of an ethylene perception inhibitor 1-methylcyclopropene (1-MCP).5 One was respiratory burst oxidase homolog (RBOH), which has a role in ROS generation and the other was metallothionein (MT), which has a role in ROS scavenging. These results suggest that ROS has a role in ethylene signaling in the PCD that occurs during lysigenous aerenchyma formation.  相似文献   
158.
159.
Hydroxylated polychlorinated biphenyls are the metabolites produced from parent compounds by the drug-metabolizing enzyme cytochrome P450. These compounds are suspected to disrupt postembryonic neural development in the brains of mammals including humans. We studied the effects of these compounds on thyroid hormone function in the brain by using metamorphosing tadpoles of the African clawed toad (Xenopus laevis) as a model for mammalian postembryonic development. The metamorphosis assay revealed that these compounds inhibit thyroid hormone-induced metamorphosis. Genome-wide gene expression analysis in the brain following short-term exposure demonstrated that delayed metamorphosis could partially be caused by disruption of thyroid hormone-induced gene expression. Furthermore, we associated the terms of functional ontology with the genes, whose expression was disrupted by these compounds. We suggest that the use of a genome-wide analysis coupled with bioinformatics might provide an overview of the molecular mechanism underlying thyroid-disrupting activities in vivo.  相似文献   
160.
We describe a protocol for creating localized DNA double-strand breaks (DSBs) with minimal requirements that can be applied in cell biology and molecular biology. This protocol is based on the combination of 5-bromo-2'-deoxyuridine (BrdU) labeling and ultraviolet C (UVC) irradiation through porous membranes. Cells are labeled with 10 μM BrdU for 48-72 h, washed with Ca(2+)- and Mg(2+)-free PBS(-), covered by polycarbonate membranes with micropores and exposed to UVC light. With this protocol, localized DSBs are created within subnuclear areas, irrespective of the cell cycle phase. Recruitment of proteins involved in DNA repair, DNA damage response, chromatin remodeling and histone modifications can be visualized without any specialized equipment. The quality is the same as that obtained by laser microirradiation or by any other focal irradiation. DSBs become visible within 30 min of UVC irradiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号