首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   17篇
  2022年   4篇
  2021年   6篇
  2020年   2篇
  2017年   5篇
  2015年   4篇
  2014年   9篇
  2013年   13篇
  2012年   13篇
  2011年   23篇
  2010年   6篇
  2009年   9篇
  2008年   18篇
  2007年   18篇
  2006年   16篇
  2005年   11篇
  2004年   23篇
  2003年   6篇
  2002年   18篇
  2001年   16篇
  2000年   9篇
  1999年   12篇
  1998年   3篇
  1997年   2篇
  1995年   5篇
  1992年   7篇
  1991年   8篇
  1990年   6篇
  1989年   3篇
  1988年   2篇
  1987年   5篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1973年   1篇
  1972年   6篇
  1971年   2篇
  1970年   2篇
  1969年   9篇
  1967年   1篇
  1966年   1篇
  1965年   5篇
  1962年   1篇
  1960年   4篇
  1959年   1篇
排序方式: 共有346条查询结果,搜索用时 15 毫秒
101.
102.
BackgroundEndorectal balloon (ERB) has been shown to reduce rectal radiation dose and late gastrointestinal toxicities in patients with prostate cancer. However, the usefulness of ERBs for patients with prostate cancer whose rectal shape or size is suboptimal has not been investigated. The purpose of this study was to present the long-term follow-up results of ERB-assisted helical tomotherapy for localized prostate cancer patients whose initial radiation treatment planning (RTP) was unacceptable due to suboptimal rectal shape or size.Materials and methodsOf 541 consecutive patients with localized prostate cancer, 10 were included in this study whose RTPs without ERBs did not meet dose constraints due to: 1) Intestinal intrusion, 2) Small rectum; or 3) Unstable rectal shape. We re-planned using ERBs and delivered 76 Gy in 38 fractions, and evaluated the long-term usefulness and safety of ERB-assisted helical tomotherapy.ResultsAt a median follow-up of 109 months, there were no local recurrences of prostate cancer. The overall, cause-specific, and progression-free survivals at 10 years were 90.0%, 100%, and 83%, respectively. Adverse events of grade 3 or higher were not observed during or after ERB-assisted helical tomotherapy.ConclusionsWhen intestinal intrusion, a small rectum, or an unstable rectal shape is an obstacle for administering helical tomotherapy, ERBs might be the solution.  相似文献   
103.
104.
Cyclooxygenase-2 (COX-2) mediates various inflammatory responses and is expressed in pancreatic tissue from patients with chronic pancreatitis. To examine the role of COX-2 in chronic pancreatitis, we investigated its participation in regulating functions of pancreatic stellate cells (PSCs), using isolated rat PSCs. COX-2 was expressed in culture-activated PSCs but not in freshly isolated quiescent PSCs. TGF-1, IL-1, and IL-6 enhanced COX-2 expression in activated PSCs, concomitantly increasing the expression of -smooth muscle actin (-SMA), a parameter of PSC activation. The COX-2 inhibitor NS-398 blocked culture activation of freshly isolated quiescent PSCs. NS-398 also inhibited the enhancement of -SMA expression by TGF-1, IL-1, and IL-6 in activated PSCs. These data indicate that COX-2 is required for the initiation and promotion of PSC activation. We further investigated the mechanism by which cytokines enhance COX-2 expression in PSCs. Adenovirus-mediated expression of dominant negative Smad2/3 inhibited the increase in expression of COX-2, -SMA, and collagen-1 mediated by TGF-1 in activated PSCs. Moreover, dominant negative Smad2/3 expression attenuated the expression of COX-2 and -SMA enhanced by IL-1 and IL-6. Anti-TGF- neutralizing antibody also attenuated the increase in COX-2 and -SMA expression caused by IL-1 and IL-6. IL-6 as well as IL-1 enhanced TGF-1 secretion from PSCs. These data indicate that Smad2/3-dependent pathway plays a central role in COX-2 induction by TGF-1, IL-1, and IL-6. Furthermore, IL-1 and IL-6 promote PSC activation by enhancing COX-2 expression indirectly through Smad2/3-dependent pathway by increasing TGF-1 secretion from PSCs. transforming growth factor-; interleukin; Smad; autocrine; pancreatic fibrosis  相似文献   
105.
Despite their wide occurrence, proteoglycans (PGs) have never been isolated from the saliva of higher animals. We found that the Collocalia glycoproteins isolated from edible birds'-nests (the dried forms of regurgitated saliva of male Collocalia swiftlets) were rich in a PG containing nonsulfated chondroitin glycosaminoglycans (GAGs). We have devised a method to isolate a PG from the water extract of the white nest built by Aerodramus fuciphagus (white nest swiftlets) with a yield of 2-mg PG per gram nest. This PG contained 83% of carbohydrates, of which 79% were GalNAc and GlcUA (D-glucuronic acid) in an equimolar ratio. By using chondroitin AC lyase, the structure of GAGs in this PG was established to be chondroitin ( --> 4GlcUAbeta1 --> 3GalNAcbeta1 --> )(n) chains. The average molecular mass of the chondroitin chain was estimated to be 49 kDa by gel filtration. We have isolated a linkage region hexasaccharide, DeltaHexUAalpha1 --> 3GalNAcbeta1 --> 4GlcUAbeta1 --> 3Galbeta1 --> 3Galbeta1 --> 4Xyl, from this PG by chondroitinase ABC digestion to show that the GAGs in this PG are also linked to the core protein through the common tetrasaccharide linker, GlcUAbeta1 --> 3Galbeta1 --> 3Galbeta1 --> 4Xyl, found in various PGs. As water was not effective in extracting uronic acid-containing glycoconjugates from the black nest built by black nest swiftlets (A. maximus), we used 4 M guanidium chloride and anion-exchange chromatography in the presence of urea to extract and isolate about 30 mg of a chondroitin PG preparation from 10 g of the desialylated black nest. As the biological significance of chondroitin is still not well understood, bird's nest should become a convenient source for preparing this unique GAG to study its biological functions.  相似文献   
106.
The purpose of the present study is to characterize the ENaC-mediated Na+ absorption in human upper airway epithelia, nasal cavity, and paranasal sinus. To perform the purpose, we obtained epithelial cells from human nasal polyp (NP) and paranasal sinus mucosa (PSM) by endoscopic surgery. We measured the short-circuit current (I(sc)) sensitive to benzamil (a specific ENaC blocker). The benzamil-sensitive I(sc) (Na+ absorption) in NP was larger than that in PSM. The mRNA expression of three subunits of ENaC was as follows: alpha>beta>gamma in both tissue, NP and MS. The mRNA expression of gamma subunit of ENaC in NP was larger than that in PSM, but no difference of mRNA expression of alpha or beta ENaC subunit between NP and PSM was detected. We found correlation of the Na+ absorption to mRNA expression of gamma ENaC in NP and PSM. Forskolin diminished the Na+ absorption associated with an increase in Cl- secretion. These observations suggest that: (1) human NP absorbs more ENaC-mediated Na+ than PSM, (2) expression of gamma ENaC in plays a key role in the ENaC-mediated Na+ absorption in NP and PSM, and (3) cAMP diminishes the ENaC-mediated Na+ absorption by stimulating Cl- secretion (diminution of driving force for Na+ absorption) in NP and PSM.  相似文献   
107.
A novel approach for the preparation of a biotinylated dendrimer-based MRI agent 5 is described, in which a unique disulfide bond in the core of the Gd(III)-1B4M-DTPA chelated G2 PAMAM dendrimer was reduced and then attached to a maleimide-functionalized biotin. The new MRI agent 5 features a well-defined dendron structure and a unique biotin functionality. Immobilization of up to four copies of biotinylated dendrimer 5 to fluorescently labeled avidin yields a supramolecular avidin-biotin-dendrimer-Gd(III) complex. Validation of the complex in mice bearing ovarian cancer tumors demonstrates that the avidin-biotin-dendrimer targeting system efficiently targets and delivers sufficient amounts of chelated Gd(III) and fluorophores (e.g., Rhodamine green) to ovarian tumors to produce visible changes in the tumors by both MRI and optical imaging, respectively. Thus, the avidin-biotin-dendrimer complex may be used as a tumor-targeted probe for dual-modality magnetic resonance and fluorescence imaging.  相似文献   
108.
Iontophoresis is a technology for transdermal delivery of ionic small medicines by faint electricity. Since iontophoresis can noninvasively deliver charged molecules into the skin, this technology could be a useful administration method that may enhance patient comfort. Previously, we succeeded in the transdermal penetration of positively charged liposomes (diameters: 200–400 nm) encapsulating insulin by iontophoresis (Kajimoto, K., Yamamoto, M., Watanabe, M., Kigasawa, K., Kanamura, K., Harashima, H., and Kogure, K. (2011) Int. J. Pharm. 403, 57–65). However, the mechanism by which these liposomes penetrated the skin was difficult to define based on general knowledge of principles such as electro-repulsion and electro-osmosis. In the present study, we confirmed that rigid nanoparticles could penetrate into the epidermis by iontophoresis. We further found that levels of the gap junction protein connexin 43 protein significantly decreased after faint electric stimulus (ES) treatment, although occludin, CLD-4, and ZO-1 levels were unchanged. Moreover, connexin 43 phosphorylation and filamentous actin depolymerization in vivo and in vitro were observed when permeation of charged liposomes through intercellular spaces was induced by ES. Ca2+ inflow into cells was promoted by ES with charged liposomes, while a protein kinase C inhibitor prevented ES-induced permeation of macromolecules. Consequently, we demonstrate that ES treatment with charged liposomes induced dissociation of intercellular junctions via cell signaling pathways. These findings suggest that ES could be used to regulate skin physiology.  相似文献   
109.
Interferon-α (IFN-α) is used clinically to treat hepatocellular carcinoma (HCC), although the detailed therapeutic mechanisms remain elusive. In particular, IFN-α has long been implicated in control of the cell cycle, but its actual point of action has not been clarified. Here, using time lapse imaging analyses of the human HCC cell line HuH7 carrying a fluorescence ubiquitination-based cell cycle indicator (Fucci), we found that IFN-α induced cell cycle arrest in the G0/G1 phases, leading to apoptosis through an IFN-α type-2 receptor (IFNAR2)-dependent signaling pathway. Detailed analyses by time lapse imaging and biochemical assays demonstrated that the IFN-α/IFNAR2 axis sensitizes cells to apoptosis in the S/G2/M phases in preparation for cell death in the G0/G1 phases. In summary, this study is the first to demonstrate the detailed mechanism of IFN-α as an anticancer drug, using Fucci-based time lapse imaging, which will be informative for treating HCC with IFN-α in clinical practice.  相似文献   
110.
In anti-cancer therapy mediated by a nanoparticle-based drug delivery system (DDS), overall efficacy depends on the release efficiency of cargos from the nanoparticles in the cancer cells as well as the specificity of delivery to tumor tissue. However, conventional liposome-based DDS have no mechanism for specifically releasing the encapsulated cargos inside the cancer cells. To overcome this barrier, we developed nanoparticles containing a novel liposomal membrane destabilization peptide (LMDP) that can destabilize membranes by cleavage with intramembranous proteases on/in cancer cells. Calcein encapsulated in liposomes modified with LMDP (LMDP-lipo) was effectively released in the presence of a membrane fraction containing an LMDP-cleavable protease. The release was inhibited by a protease inhibitor, suggesting that LMDP-lipo could effectively release its cargo into cells in response to a cancer-specific protease. Moreover, when LMDP-lipo contained fusogenic lipids, the release of cargo was accelerated, suggesting that the fusion of LMDP-lipo with cellular membranes was the initial step in the intracellular delivery. Time-lapse microscopic observations showed that the release of cargo from LMDP-lipo occurred immediately after association of LMDP-lipo with target cells. Consequently, LMDP-lipo could be a useful nanoparticle capable of effective release of cargos specifically into targeted cancer cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号