首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   14篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   12篇
  2011年   12篇
  2010年   8篇
  2009年   4篇
  2008年   7篇
  2007年   5篇
  2006年   8篇
  2005年   9篇
  2004年   16篇
  2003年   12篇
  2002年   12篇
  2000年   2篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1992年   2篇
  1988年   1篇
排序方式: 共有156条查询结果,搜索用时 34 毫秒
91.
In this study a total of 29 Bacillus species isolated from the soil was analyzed using the agar diffusion method in terms of their general inhibition effects to some test bacteria. It has been found that isolates are effective against gram-positive and gram-negative bacteria whereas their extensive inhibition effect is particularly against gram-positive bacteria. On the other hand, B. cereus M15 strain has an inhibitory effect against both gram-positive and gram-negative bacteria. Furthermore some isolates are more effective against test bacteria when compared to some antibiotics.  相似文献   
92.
Cannabinoid CB(1) and the metabotropic GABA(B) receptors have been shown to display similar pharmacological effects and co-localization in certain brain regions. Previous studies have reported a functional link between the two systems. As a first step to investigate the underlying molecular mechanism, here we show cross-inhibition of G-protein signaling between GABA(B) and CB(1) receptors in rat hippocampal membranes. The CB(1) agonist R-Win55,212-2 displayed high potency and efficacy in stimulating guanosine-5'-O-(3-[(35)S]thio)triphosphate, [(35)S]GTPgammaS binding. Its effect was completely blocked by the specific CB(1) antagonist AM251 suggesting that the signaling was via CB(1) receptors. The GABA(B) agonists baclofen and SKF97541 also elevated [(35)S]GTPgammaS binding by about 60%, with potency values in the micromolar range. Phaclofen behaved as a low potency antagonist with an ED(50) approximately 1mM. However, phaclofen at low doses (1 and 10nM) slightly but significantly attenuated maximal stimulation of [(35)S]GTPgammaS binding by the CB(1) agonist R-Win55,212-2. The observation that higher concentrations of phaclofen had no such effect rule out the possibility of its direct action on CB(1) receptors. The pharmacologically inactive stereoisomer S-Win55,212-3 had no effect either alone or in combination with phaclofen establishing that the interaction is stereospecific in hippocampus. The specific CB(1) antagonist AM251 at a low dose (1 nM) also inhibited the efficacy of G-protein signaling of the GABA(B) receptor agonist SKF97541. Cross-talk of the two receptor systems was not detected in either spinal cord or cerebral cortex membranes. It is speculated that the interaction might occur via an allosteric interaction between a subset of GABA(B) and CB(1) receptors in rat hippocampal membranes. Although the exact molecular mechanism of the reciprocal inhibition between CB(1) and GABA(B) receptors will have to be explored by future studies it is intriguing that the cross-talk might be involved in balance tuning the endocannabinoid and GABAergic signaling in hippocampus.  相似文献   
93.
Both cluster of differentiation (CD)4+ and CD8+ T lymphocytes play key roles in immunity to Brucella, in part because they secrete interferon (IFN)‐γ and activate bactericidal functions in macrophages. Therefore, use of markers of macrophage activation may have diagnostic and prognostic significance. High‐mobility group‐box 1 protein (HMGB1), a late‐onset pro‐inflammatory cytokine, is secreted by activated macrophages. Soluble hemoglobin scavenger receptor (sCD163) is a specific marker of anti‐inflammatory macrophages. The aim of this study was to investigate the diagnostic value of HMGB1 and sCD163 concentrations in brucellosis and its various clinical forms. Serum HMGB1 and sCD163 concentrations in 49 brucellosis patients were compared with those in 52 healthy control subjects. Both serum HMGB1 and sCD163 concentrations were significantly higher in brucellosis patients than in healthy controls (P < 0.001). There were no statistically significant differences in serum concentrations of HMGB1 and sCD163 between cases of acute, subacute and chronic brucellosis. Additionally, serum HMGB1 concentrations were positively correlated with sCD163 concentrations, whereas neither HMGB1 nor sCD163 concentrations were correlated with C‐reactive protein concentrations, white cell counts or erythrocyte sedimentation rates. Therefore, serum concentrations of HMGB1 and sCD163 may be diagnostic markers for brucellosis, but neither can be used to differentiate the three different forms of this disease (acute, subacute and chronic).  相似文献   
94.
Where do the bottlenecks for information and attention lie when our visual system processes incoming stimuli? The human visual system encodes the incoming stimulus and transfers its contents into three major memory systems with increasing time scales, viz., sensory (or iconic) memory, visual short-term memory (VSTM), and long-term memory (LTM). It is commonly believed that the major bottleneck of information processing resides in VSTM. In contrast to this view, we show major bottlenecks for motion processing prior to VSTM. In the first experiment, we examined bottlenecks at the stimulus encoding stage through a partial-report technique by delivering the cue immediately at the end of the stimulus presentation. In the second experiment, we varied the cue delay to investigate sensory memory and VSTM. Performance decayed exponentially as a function of cue delay and we used the time-constant of the exponential-decay to demarcate sensory memory from VSTM. We then decomposed performance in terms of quality and quantity measures to analyze bottlenecks along these dimensions. In terms of the quality of information, two thirds to three quarters of the motion-processing bottleneck occurs in stimulus encoding rather than memory stages. In terms of the quantity of information, the motion-processing bottleneck is distributed, with the stimulus-encoding stage accounting for one third of the bottleneck. The bottleneck for the stimulus-encoding stage is dominated by the selection compared to the filtering function of attention. We also found that the filtering function of attention is operating mainly at the sensory memory stage in a specific manner, i.e., influencing only quantity and sparing quality. These results provide a novel and more complete understanding of information processing and storage bottlenecks for motion processing.  相似文献   
95.

Background

Genomic instability is a hallmark of cancer cells, and this cellular phenomenon can emerge as a result of replicative stress. It is possible to take advantage of replicative stress, and enhance it in a targeted way to fight cancer cells. One of such strategies involves targeting the cell division cycle 7-related protein kinase (CDC7), a protein with key roles in regulation of initiation of DNA replication. CDC7 overexpression is present in different cancers, and small molecule inhibitors of the CDC7 have well-documented anti-tumor effects. Here, we aimed to test the potential of CDC7 inhibition as a new strategy for glioblastoma treatment.

Methods

PHA-767491 hydrochloride was used as the CDC7 inhibitor. Two glioblastoma cell lines (U87-MG and U251-MG) and a control cell line (3T3) were used to characterize the effects of CDC7 inhibition. The effect of CDC7 inhibition on cell viability, cell proliferation, apoptosis, migration, and invasion were analyzed. In addition, real-time PCR arrays were used to identify the differentially expressed genes in response to CDC7 inhibition.

Results

Our results showed that CDC7 inhibition reduces glioblastoma cell viability, suppresses cell proliferation, and triggers apoptosis in glioblastoma cell lines. In addition, we determined that CDC7 inhibition also suppresses glioblastoma cell migration and invasion. To identify molecular targets of CDC7 inhibition, we used real-time PCR arrays, which showed dysregulation of several mRNAs and miRNAs.

Conclusions

Taken together, our findings suggest that CDC7 inhibition is a promising strategy for treatment of glioblastoma.
  相似文献   
96.
Obesity-related leptin resistance manifests in loss of?leptin's ability to reduce appetite and increase energy expenditure. Obesity is also associated with increased activity of the endocannabinoid system, and CB(1) receptor (CB(1)R) inverse agonists reduce body weight and the associated metabolic complications, although adverse neuropsychiatric effects halted their therapeutic development. Here we show that in mice with diet-induced obesity (DIO), the peripherally restricted CB(1)R inverse agonist JD5037 is equieffective with its brain-penetrant parent compound in reducing appetite, body weight, hepatic steatosis, and insulin resistance, even though it does not occupy central CB(1)R or induce related behaviors. Appetite and weight reduction by JD5037 are mediated by resensitizing DIO mice to endogenous leptin through reversing the hyperleptinemia by decreasing leptin expression and secretion by adipocytes and increasing leptin clearance via the?kidney. Thus, inverse agonism at peripheral CB(1)R not only improves cardiometabolic risk in obesity but has antiobesity effects by reversing leptin resistance.  相似文献   
97.
We have developed a new kinetic model to study how microbial dynamics are affected by the heterogeneity in the physical structure of the environment and by different strategies for hydrolysis of polymeric carbon. The hybrid model represented the dynamics of substrates and enzymes using a continuum representation and the dynamics of the cells were modeled individually. Individual-based biological model allowed us to explicitly simulate microbial diversity, and to model cell physiology as regulated via optimal allocation of cellular resources to enzyme synthesis, control of growth rate by protein synthesis capacity, and shifts to dormancy. This model was developed to study how microbial community functioning is influenced by local environmental conditions in heterogeneous media such as soil and by the functional attributes of individual microbes. Microbial community dynamics were simulated at two spatial scales: micro-pores that resemble 6-20-μm size portions of the soil physical structure and in 111-μm size soil aggregates with a random pore structure. Different strategies for acquisition of carbon from polymeric cellulose were investigated. Bacteria that express membrane-associated hydrolase had different growth and survival dynamics in soil pores than bacteria that release extracellular hydrolases. The kinetic differences suggested different functional niches for these two microbe types in cellulose utilization. Our model predicted an emergent behavior in which co-existence of membrane-associated hydrolase and extracellular hydrolases releasing organisms led to higher cellulose utilization efficiency and reduced stochasticity. Our analysis indicated that their co-existence mutually benefits these organisms, where basal cellulose degradation activity by membrane-associated hydrolase-expressing cells shortened the soluble hydrolase buildup time and, when enzyme buildup allowed for cellulose degradation to be fast enough to sustain exponential growth, all the organisms in the community shared the soluble carbon product and grew together. Although pore geometry affected the kinetics of cellulose degradation, the patterns observed for the bacterial community dynamics in the 6-20 μm-sized micro-pores were relevant to the dynamics in the more complex 111-μm-sized porous soil aggregates, implying that micro-scale studies can be useful approximations to aggregate scale studies when local effects on microbial dynamics are studied. As shown with examples in this study, various functional niches of the bacterial communities can be investigated using complex predictive mathematical models where the role of key environmental aspects such as the heterogeneous three-dimensional structure, functional niches of the community members, and environmental biochemical processes are directly connected to microbial metabolism and maintenance in an integrated model.  相似文献   
98.
This review examines the electrochemical techniques used to study extracellular electron transfer in the electrochemically active biofilms that are used in microbial fuel cells and other bioelectrochemical systems. Electrochemically active biofilms are defined as biofilms that exchange electrons with conductive surfaces: electrodes. Following the electrochemical conventions, and recognizing that electrodes can be considered reactants in these bioelectrochemical processes, biofilms that deliver electrons to the biofilm electrode are called anodic, ie electrode-reducing, biofilms, while biofilms that accept electrons from the biofilm electrode are called cathodic, ie electrode-oxidizing, biofilms. How to grow these electrochemically active biofilms in bioelectrochemical systems is discussed and also the critical choices made in the experimental setup that affect the experimental results. The reactor configurations used in bioelectrochemical systems research are also described and the authors demonstrate how to use selected voltammetric techniques to study extracellular electron transfer in bioelectrochemical systems. Finally, some critical concerns with the proposed electron transfer mechanisms in bioelectrochemical systems are addressed together with the prospects of bioelectrochemical systems as energy-converting and energy-harvesting devices.  相似文献   
99.
100.
Spinal muscular atrophy (SMA) is a clinically and genetically heterogeneous disease characterized by the degeneration of lower motor neurons. The most frequent form is linked to mutations in SMN1. Childhood SMA associated with progressive myoclonic epilepsy (SMA-PME) has been reported as a rare autosomal-recessive condition unlinked to mutations in SMN1. Through linkage analysis, homozygosity mapping, and exome sequencing in three unrelated SMA-PME-affected families, we identified a homozygous missense mutation (c.125C>T [p.Thr42Met]) in exon 2 of ASAH1 in the affected children of two families and the same mutation associated with a deletion of the whole gene in the third family. Expression studies of the c.125C>T mutant cDNA in Farber fibroblasts showed that acid-ceramidase activity was only 32% of that generated by normal cDNA. This reduced activity was able to normalize the ceramide level in Farber cells, raising the question of the pathogenic mechanism underlying the CNS involvement in deficient cells. Morpholino knockdown of the ASAH1 ortholog in zebrafish led to a marked loss of motor-neuron axonal branching, a loss that is associated with increased apoptosis in the spinal cord. Our results reveal a wide phenotypic spectrum associated with ASAH1 mutations. An acid-ceramidase activity below 10% results in Farber disease, an early-onset disease starting with subcutaneous lipogranulomata, joint pain, and hoarseness of the voice, whereas a higher residual activity might be responsible for SMA-PME, a later-onset phenotype restricted to the CNS and starting with lower-motor-neuron disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号