首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   14篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   12篇
  2011年   12篇
  2010年   8篇
  2009年   4篇
  2008年   7篇
  2007年   5篇
  2006年   8篇
  2005年   9篇
  2004年   16篇
  2003年   12篇
  2002年   12篇
  2000年   2篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1992年   2篇
  1988年   1篇
排序方式: 共有156条查询结果,搜索用时 78 毫秒
21.
The human epidermal growth factor receptor (HER/ErbB) system comprises the epidermal growth factor receptor (EGFR/HER1) and three other homologs, namely HERs 2-4. This receptor system plays a critical role in cell proliferation and differentiation and receptor overexpression has been associated with poor prognosis in cancers of the epithelium. Here, we examine the effect of coexpressing varying levels of HERs 1-3 on the receptor dimerization patterns using a detailed kinetic model for HER/ErbB dimerization and trafficking. Our results indicate that coexpression of EGFR with HER2 or HER3 biases signaling to the cell surface and retards signal downregulation. In addition, simultaneous coexpression of HERs 1-3 leads to an abundance of HER2-HER3 heterodimers, which are known to be potent inducers of cell growth and transformation. Our new approach to use parameter dependence analysis in experimental design reveals that measurements of HER3 phosphorylation and HER2 internalization ratio may prove to be especially useful for the estimation of critical model parameters. Further, we examine the effect of receptor dimerization patterns on biological response using a simple phenomenological model. Results indicate that coexpression of EGFR with HER2 and HER3 at low to moderate levels may enable cells to match the response of a high HER2 expresser.  相似文献   
22.
A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.  相似文献   
23.
Yilmaz O  Tripathy SP  Ogmen H 《PloS one》2012,7(5):e36511
Trajectory perception is crucial in scene understanding and action. A variety of trajectory misperceptions have been reported in the literature. In this study, we quantify earlier observations that reported distortions in the perceived shape of bilinear trajectories and in the perceived positions of their deviation. Our results show that bilinear trajectories with deviation angles smaller than 90 deg are perceived smoothed while those with deviation angles larger than 90 degrees are perceived sharpened. The sharpening effect is weaker in magnitude than the smoothing effect. We also found a correlation between the distortion of perceived trajectories and the perceived shift of their deviation point. Finally, using a dual-task paradigm, we found that reducing attentional resources allocated to the moving target causes an increase in the perceived shift of the deviation point of the trajectory. We interpret these results in the context of interactions between motion and position systems.  相似文献   
24.
25.
It is reported that the pineal gland and its main hormone melatonin may have a role in the regulation of ghrelin synthesis in the brain. Stomach is the place where ghrelin is predominantly expressed and secreted. One aim of this study was to investigate possible effects of pinealectomy and melatonin treatment on gastric ghrelin amount. The studies on the effects of the pineal gland on leptin and ghrelin arises the question whether the pineal gland has also effects on the other energy-regulatory peptides such as peptide YY (PYY) and neuropeptide Y (NPY). Therefore, we also aimed to investigate the changes in the immunohistochemical staining of intestinal PYY and hypothalamic NPY following pinealectomy and melatonin treatment. Serum PYY levels were also investigated. Sprague-Dawley rats were divided into four groups as sham-operated (SHAM), sham-operated with melatonin treatment (SHAM-MT), pinealectomised (PNX) and melatonin-treated PNX (PNX-MT) groups. The cells immunostained for ghrelin were abundant throughout the gastric mucosa in all the groups. Neither pinealectomy nor exogenous melatonin affected significantly immunohistochemical staining of ghrelin in stomach. Pinealectomy resulted in a significant increase in immunohistochemical staining of PYY in ileum. The results of serum PYY measurement corresponded closely to the data obtained by immunohistochemical analysis of PYY in ileum, being significantly lower and higher in SHAM and PNX groups, respectively. Pinealectomy caused a decrease in NPY synthesis in ARC as understood from low immunohistochemical staining of NPY. Melatonin treatment increased NPY synthesis in SHAM rats and restored reduction in NPY synthesis caused by pinealectomy. In conclusion, the pineal gland and its main hormone melatonin can be suggested to have a role in the regulation of NPY synthesis in ARC and PYY in gastrointestinal system.  相似文献   
26.
The HER/ErbB family of receptor tyrosine kinases drives critical responses in normal physiology and cancer, and the expression levels of the various HER receptors are critical determinants of clinical outcomes. HER activation is driven by the formation of various dimer complexes between members of this receptor family. The HER dimer types can have differential effects on downstream signaling and phenotypic outcomes. We constructed an integrated mathematical model of HER activation, and trafficking to quantitatively link receptor expression levels to dimerization and activation. We parameterized the model with a comprehensive set of HER phosphorylation and abundance data collected in a panel of human mammary epithelial cells expressing varying levels of EGFR/HER1, HER2 and HER3. Although parameter estimation yielded multiple solutions, predictions for dimer phosphorylation were in agreement with each other. We validated the model using experiments where pertuzumab was used to block HER2 dimerization. We used the model to predict HER dimerization and activation patterns in a panel of human mammary epithelial cells lines with known HER expression levels in response to stimulations with ligands EGF and HRG. Simulations over the range of expression levels seen in various cell lines indicate that: i) EGFR phosphorylation is driven by HER1-HER1 and HER1-HER2 dimers, and not HER1-HER3 dimers, ii) HER1-HER2 and HER2-HER3 dimers both contribute significantly to HER2 activation with the EGFR expression level determining the relative importance of these species, and iii) the HER2-HER3 dimer is largely responsible for HER3 activation. The model can be used to predict phosphorylated dimer levels for any given HER expression profile. This information in turn can be used to quantify the potencies of the various HER dimers, and can potentially inform personalized therapeutic approaches.  相似文献   
27.
Although biofilms represent a common bacterial lifestyle in clinically and environmentally important habitats, there is scant information on the extent of gene transfer in these spatially structured populations. The objective of this study was to gain insight into factors that affect transfer of the promiscuous multidrug resistance plasmid pB10 in Escherichia coli biofilms. Biofilms were grown in different experimental settings, and plasmid transfer was monitored using laser scanning confocal microscopy and plate counting. In closed flow cells, plasmid transfer in surface-attached submerged biofilms was negligible. In contrast, a high plasmid transfer efficiency was observed in a biofilm floating at the air-liquid interface in an open flow cell with low flow rates. A vertical flow cell and a batch culture biofilm reactor were then used to detect plasmid transfer at different depths away from the air-liquid interface. Extensive plasmid transfer occurred only in a narrow zone near that interface. The much lower transfer frequencies in the lower zones coincided with rapidly decreasing oxygen concentrations. However, when an E. coli csrA mutant was used as the recipient, a thick biofilm was obtained at all depths, and plasmid transfer occurred at similar frequencies throughout. These results and data from separate aerobic and anaerobic matings suggest that oxygen can affect IncP-1 plasmid transfer efficiency, not only directly but also indirectly, through influencing population densities and therefore colocalization of donors and recipients. In conclusion, the air-liquid interface can be a hot spot for plasmid-mediated gene transfer due to high densities of juxtaposed donor and recipient cells.  相似文献   
28.
BackgroundAmino acids have an important role in metabolism and may affect COVID-19-related outcomes. In our study, the amino acid serum level of hospitalized COVID19 patients was evaluated to determine a new treatment strategy.MethodsThe amino acid profile covering 43 amino acids in 68 subjects, comprising 30 (14 men and 16 women) controls and 38 (16 men and 22 women) COVID-19 patients, were examined. The amino acid profiles of the participants were screened by LC-MS/MS.ResultsCompared with the control group, serum levels of 27 amino acids increased in the patient group. Alpha-aminopimelic acid, sarcosine, and hydroxyproline amino acids were considerably higher in the control group than in the patient group (p<0.0001). There was no notable difference among control group and the case group for 13 amino acids (p≥0.05). A significant positive correlation was seen among the control and the patient groups in the mean amino acid values (r=0.937; p<0.0001).ConclusionsThese results postulated a clear picture on the serum levels of amino acid in the COVID-19 patients. Serum amino acids measured in hospitalized COVID-19 patients can explain the patient''s metabolic status during the disease.  相似文献   
29.
30.
The inactivation kinetics of Escherichia coli penicillin G acylase (PGA), and cross-linked stabilization of the enzyme by dextran-dialdehyde derivatives of molecular weights of 11500, 37000 and 71000, were similar from pH 2 to pH 10. Inactivation of the native and modified PGA obeyed first order kinetics. The lowest inactivation rate constants for native and dextran-11500-dialdehyde modified PGA were 9.0310 and 1.5310 min respectively at pH 7.0. The highest pH stabilization (nearly ten-fold) was obtained at pH 7.0.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号