首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   6篇
  2023年   5篇
  2022年   3篇
  2021年   9篇
  2020年   1篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   3篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1983年   1篇
  1970年   1篇
  1965年   3篇
  1964年   2篇
  1963年   1篇
  1960年   3篇
  1958年   1篇
排序方式: 共有59条查询结果,搜索用时 31 毫秒
51.
52.
Practical experiments drive important scientific discoveries in biology, but theory-based research studies also contribute novel—sometimes paradigm-changing—findings. Here, we appraise the roles of theory-based approaches focusing on the experiment-dominated wet-biology research areas of microbial growth and survival, cell physiology, host–pathogen interactions, and competitive or symbiotic interactions. Additional examples relate to analyses of genome-sequence data, climate change and planetary health, habitability, and astrobiology. We assess the importance of thought at each step of the research process; the roles of natural philosophy, and inconsistencies in logic and language, as drivers of scientific progress; the value of thought experiments; the use and limitations of artificial intelligence technologies, including their potential for interdisciplinary and transdisciplinary research; and other instances when theory is the most-direct and most-scientifically robust route to scientific novelty including the development of techniques for practical experimentation or fieldwork. We highlight the intrinsic need for human engagement in scientific innovation, an issue pertinent to the ongoing controversy over papers authored using/authored by artificial intelligence (such as the large language model/chatbot ChatGPT). Other issues discussed are the way in which aspects of language can bias thinking towards the spatial rather than the temporal (and how this biased thinking can lead to skewed scientific terminology); receptivity to research that is non-mainstream; and the importance of theory-based science in education and epistemology. Whereas we briefly highlight classic works (those by Oakes Ames, Francis H.C. Crick and James D. Watson, Charles R. Darwin, Albert Einstein, James E. Lovelock, Lynn Margulis, Gilbert Ryle, Erwin R.J.A. Schrödinger, Alan M. Turing, and others), the focus is on microbiology studies that are more-recent, discussing these in the context of the scientific process and the types of scientific novelty that they represent. These include several studies carried out during the 2020 to 2022 lockdowns of the COVID-19 pandemic when access to research laboratories was disallowed (or limited). We interviewed the authors of some of the featured microbiology-related papers and—although we ourselves are involved in laboratory experiments and practical fieldwork—also drew from our own research experiences showing that such studies can not only produce new scientific findings but can also transcend barriers between disciplines, act counter to scientific reductionism, integrate biological data across different timescales and levels of complexity, and circumvent constraints imposed by practical techniques. In relation to urgent research needs, we believe that climate change and other global challenges may require approaches beyond the experiment.  相似文献   
53.
The limits to biological processes on Earth are determined by physicochemical parameters, such as extremes of temperature and low water availability. Research into microbial extremophiles has enhanced our understanding of the biophysical boundaries which define the biosphere. However, there remains a paucity of information on the degree to which rates of microbial multiplication within extreme environments are determined by the availability of specific chemical elements. Here, we show that iron availability and the composition of the gaseous phase (aerobic versus microaerobic) determine the susceptibility of a marine bacterium, Halomonas hydrothermalis, to suboptimal and elevated temperature and salinity by impacting rates of cell division (but not viability). In particular, iron starvation combined with microaerobic conditions (5% [vol/vol] O2, 10% [vol/vol] CO2, reduced pH) reduced sensitivity to temperature across the 13°C range tested. These data demonstrate that nutrient limitation interacts with physicochemical parameters to determine biological permissiveness for extreme environments. The interplay between resource availability and stress tolerance, therefore, may shape the distribution and ecology of microorganisms within Earth''s biosphere.  相似文献   
54.
Astrobiology is mistakenly regarded by some as a field confined to studies of life beyond Earth. Here, we consider life on Earth through an astrobiological lens. Whereas classical studies of microbiology historically focused on various anthropocentric sub-fields (such as fermented foods or commensals and pathogens of crop plants, livestock and humans), addressing key biological questions via astrobiological approaches can further our understanding of all life on Earth. We highlight potential implications of this approach through the articles in this Environmental Microbiology special issue ‘Ecophysiology of Extremophiles’. They report on the microbiology of places/processes including low-temperature environments and chemically diverse saline- and hypersaline habitats; aspects of sulphur metabolism in hypersaline lakes, dysoxic marine waters, and thermal acidic springs; biology of extremophile viruses; the survival of terrestrial extremophiles on the surface of Mars; biological soils crusts and rock-associated microbes of deserts; subsurface and deep biosphere, including a salticle formed within Triassic halite; and interactions of microbes with igneous and sedimentary rocks. These studies, some of which we highlight here, contribute to our understanding of the spatiotemporal reach of Earth'sfunctional biosphere, and the tenacity of terrestrial life. Their findings will help set the stage for future work focused on the constraints for life, and how organisms adapt and evolve to circumvent these constraints.  相似文献   
55.
Archaea are environmentally ubiquitous on Earth, and their extremophilic and metabolically versatile phenotypes make them useful as model systems for astrobiology. Here, we reveal a new functional group of halo(natrono)archaea able to utilize alpha-d -glucans (amylopectin, amylose and glycogen), sugars, and glycerol as electron donors and carbon sources for sulfur respiration. They are facultative anaerobes enriched from hypersaline sediments with either amylopectin, glucose or glycerol as electron/carbon sources and elemental sulfur as the terminal electron acceptor. They include 10 strains of neutrophilic haloarchaea from circum pH-neutral lakes and one natronoarchaeon from soda-lake sediments. The neutrophilic isolates can grow by fermentation, although addition of S0 or dimethyl sulfoxide increased growth rate and biomass yield (with a concomitant decrease in H2). Natronoarchaeal isolate AArc-S grew only by respiration, either anaerobically with S0 or thiosulfate as the terminal electron acceptor, or aerobically. Through genome analysis of five representative strains, we detected the full set of enzymes required for the observed catabolic and respiratory phenotypes. These findings provide evidence that sulfur-respiring haloarchaea partake in biogeochemical sulfur cycling, linked to terminal anaerobic carbon mineralization in hypersaline anoxic habitats. We discuss the implications for life detection in analogue environments such as the polar subglacial brine-lakes of Mars.  相似文献   
56.
The loss of cellular water (desiccation) and the resulting low cytosolic water activity are major stress factors for life. Numerous prokaryotic and eukaryotic taxa have evolved molecular and physiological adaptions to periods of low water availability or water-limited environments that occur across the terrestrial Earth. The changes within cells during the processes of desiccation and rehydration, from the activation (and inactivation) of biosynthetic pathways to the accumulation of compatible solutes, have been studied in considerable detail. However, relatively little is known on the metabolic status of organisms in the desiccated state; that is, in the sometimes extended periods between the drying and rewetting phases. During these periods, which can extend beyond decades and which we term ‘anhydrobiosis’, organismal survival could be dependent on a continued supply of energy to maintain the basal metabolic processes necessary for critical functions such as macromolecular repair. Here, we review the state of knowledge relating to the function of microorganisms during the anhydrobiotic state, highlighting substantial gaps in our understanding of qualitative and quantitative aspects of molecular and biochemical processes in desiccated cells.  相似文献   
57.
The Mars surface/near-surface is often considered to be biocidal. Here, diverse lines of evidence are presented indicating that some terrestrial microbes can survive the in-situ conditions albeit in an inactive state. For the purposes of planetary protection, it is important to consider what we mean by a planetary ‘surface’; this term has qualitatively distinct definitions fordifferent scientific disciplines, and can also have different meanings from a humanviewpoint versus that of a microbial cell. Most microbial cells spores or other cells deposited on Mars, even those that initially fall on the outward-facing part of the absolute surface, will fall within pores of the regolith or become covered by its dust. They are, therefore, protected from ultra-violet radiation. Desiccating conditions and low temperatures (−40 to −70°C) can act to preserve rather than kill all microbes, potentially maintaining cellular viability – especially for certain extremophiles – over geological timescales. Whereas salts are ubiquitous on Mars, many terrestrial microbes are highly tolerant to NaCl and other salts, and these substances (including potentially inhibitory chaotropes such as MgCl2 and perchlorates) cannot access cells in the absence of a liquid milieu. Whereas the Mars regolith is nutrient-deplete and conditions may be acidic in places, oligotrophic conditions per se are not biocidal and many terrestrial microbes can thrive in acidic conditions (some acidophiles can proliferate at or below pH 0). The low temperatures of Mars' surface are not conducive to metabolic activity, but the biophysical sophistication and robust stress biology of many terrestrial microbes, and the protection afforded by Martian conditions, are likely to ensure the long-term viability of some extremophilic microbes if transported to Mars.  相似文献   
58.
Microbial technology is exceptional among human activities and endeavours in its range of applications that benefit humanity, even exceeding those of chemistry. What is more, microbial technologists are among the most creative scientists, and the scope of the field continuously expands as new ideas and applications emerge. Notwithstanding this diversity of applications, given the dire predictions for the fate of the surface biosphere as a result of current trajectories of global warming, the future of microbial biotechnology research must have a single purpose, namely to help secure the future of life on Earth. Everything else will, by comparison, be irrelevant. Crucially, microbes themselves play pivotal roles in climate (Cavicchioli et al., Nature Revs Microbiol 17 : 569–586, 2019). To enable realization of their full potential in humanity’s effort to survive, development of new and transformative global warming-relevant technologies must become the lynchpin of microbial biotechnology research and development. As a consequence, microbial biotechnologists must consider constraining their usual degree of freedom, and re-orienting their focus towards planetary-biosphere exigences. And they must actively seek alliances and synergies with others to get the job done as fast as humanly possible; they need to enthusiastically embrace and join the global effort, subordinating where necessary individual aspirations to the common good (the amazing speed with which new COVID-19 diagnostics and vaccines were developed and implemented demonstrates what is possible given creativity, singleness of purpose and funding). In terms of priorities, some will be obvious, others less so, with some only becoming revealed after dedicated effort yields new insights/opens new vistas. We therefore refrain from developing a priority list here. Rather, we consider what is likely to happen to the Earth’s biosphere if we (and the rest of humanity) fail to rescue it. We do so with the aim of galvanizing the formulation and implementation of strategic and financial science policy decisions that will maximally stimulate the development of relevant new microbial technologies, and maximally exploit available technologies, to repair existing environmental damage and mitigate against future deterioration.  相似文献   
59.
Large regions of Earth's surface are underlain by salt deposits that evaporated from ancient oceans and are populated by extreme halophilic microbes. Some of these halophiles may have been preserved over geological timescales within hypersaline fluid inclusions, but ingresses of water and/or anthropogenic activities can lead to the formation of alternative habitats, including NaCl stalactites or other speleothems. While the microbiology of ancient evaporites has been well studied, the ecology of these recently formed structures is less-well understood. Here, the microbiology of a NaCl stalactite (‘salticle’) in a Triassic halite mine is characterized. The specific aims were to determine the presence of fluid inclusions, determine the microbial structure of the salticle compared with a nearby brine-pool and surficial soil, and characterize the ecophysiological capabilities of this unique ecosystem. The salticle contained fluid inclusions, and their microbiome was composed of Euryarchaetota, Proteobacteria, and Actinobacteria, with Haloarchaea in greater abundance than brine-pool or soil microbiomes. The salticle metagenome exhibited a greater abundance of genes involved in osmoregulation, anaerobic respiration, UV resistance, oxidative stress, and stress-protein synthesis relative to the soil microbiome. We discuss the potential astrobiological implications of salticles as enclosed salt-saturated habitats that are protected from ionizing radiation and have a stable water activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号