首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   517篇
  免费   16篇
  2022年   2篇
  2020年   5篇
  2019年   8篇
  2018年   19篇
  2017年   12篇
  2016年   17篇
  2015年   13篇
  2014年   30篇
  2013年   26篇
  2012年   35篇
  2011年   42篇
  2010年   16篇
  2009年   15篇
  2008年   29篇
  2007年   30篇
  2006年   30篇
  2005年   25篇
  2004年   32篇
  2003年   32篇
  2002年   18篇
  2001年   7篇
  2000年   3篇
  1999年   4篇
  1998年   5篇
  1997年   5篇
  1996年   2篇
  1994年   3篇
  1993年   6篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1984年   5篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1970年   3篇
  1969年   1篇
  1968年   1篇
排序方式: 共有533条查询结果,搜索用时 587 毫秒
51.
Production of tanshinones (tanshinone I and IIA) was determined in roots of Salvia przewalskii micropropagated plants. It was found that the total tanshinone content (tashinone I and tashinone IIA) was dependent on the age of the analyzed plants. The roots of 2-year-old in vitro regenerated plants at flowering stage produced highest tanshinone levels (3.8 mg/g dry weight of tanshinone I and 7.6 mg/g dry weight of tanshinone IIA).  相似文献   
52.
Kynurenic acid (KYNA) is an endogenous metabolite in the kynurenine pathway of tryptophan degradation and is an antagonist at the glycine site of the N-methyl-D-aspartate as well as at the alpha 7 nicotinic cholinergic receptors. In the brain tissue KYNA is synthesised from L-kynurenine by kynurenine aminotransferases (KAT) I and II. A host of immune mediators influence tryptophan degradation. In the present study, the levels of KYNA in cerebrospinal fluid (CSF) and serum in a group of human subjects aged between 25 and 74 years were determined by using a high performance liquid chromatography method. In CSF and serum KAT I and II activities were investigated by radioenzymatic assay, and the levels of beta(2)-microglobulin, a marker for cellular immune activation, were determined by ELISA. The correlations between neurochemical and biological parameters were evaluated. Two subject groups with significantly different ages, i.e. <50 years and >50 years, p < 0.001, showed statistically significantly different CSF KYNA levels, i.e. 2.84 +/- 0.16 fmol/microl vs. 4.09 +/- 0.14 fmol/microl, p < 0.001, respectively; but this difference was not seen in serum samples. Interestingly, KYNA is synthesised in CSF principally by KAT I and not KAT II, however no relationship was found between enzyme activity and ageing. A positive relationship between CSF KYNA levels and age of subjects indicates a 95% probability of elevated CSF KYNA with ageing (R = 0.6639, p = 0.0001). KYNA levels significantly correlated with IgG and beta(2)-microglobulin levels (R = 0.5244, p = 0.0049; R = 0.4253, p = 0.043, respectively). No correlation was found between other biological parameters in CSF or serum. In summary, a positive relationship between the CSF KYNA level and ageing was found, and the data would suggest age-dependent increase of kynurenine metabolism in the CNS. An enhancement of CSF IgG and beta(2)-microglobulin levels would suggest an activation of the immune system during ageing. Increased KYNA metabolism may be involved in the hypofunction of the glutamatergic and/or nicotinic cholinergic neurotransmission in the ageing CNS.  相似文献   
53.
Structural studies on the major glycolipid isolated from Rothia mucilaginosa were carried out utilising specific chemical degradation, NMR spectroscopy and matrix-assisted laser-desorption/ionization time of flight mass spectrometry (MALDI TOF-MS). The glycolipid was found to be a dimannosylacylmonoglyceride in which the carbohydrate part was the glycerol-linked dimannoside alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->3)-sn-Gro (Man A-Man B-Gro), of which Man B was esterified at O-6 by a fatty acid residue. A second fatty acid substituted the secondary methylene position of the glycerol residue, in contrast to the glycolipid previously found in R. dentocariosa and Saccharopolyspora strains, in which the second fatty acid esterified the primary methylene position of glycerol. Results of the ELISA experiment with rabbit specific antibacterial sera indicate that these two major glycolipids are antigenic, and the patterns of serological reactivity are similar but not identical.  相似文献   
54.
Nitric oxide and platelet energy metabolism   总被引:3,自引:0,他引:3  
This study was undertaken to determine whether nitric oxide (NO) can affect platelet responses through the inhibition of energy production. It was found that NO donors: S-nitroso-N-acetylpenicyllamine, SNAP, (5-50 microM) and sodium nitroprusside, SNP, (5-100 microM) inhibited collagen- and ADP-induced aggregation of porcine platelets. The corresponding IC50 values for SNAP and SNP varied from 5 to 30 microM and from 9 to 75 microM, respectively. Collagen- and thrombin-induced platelet secretion was inhibited by SNAP (IC50 = 50 microM) and by SNP (IC50 = 100 microM). SNAP (20-100 microM), SNP (10-200 microM) and collagen (20 microg/ml) stimulated glycolysis in intact platelets. The degree of glycolysis stimulation exerted by NO donors was similar to that produced by respiratory chain inhibitors (cyanide and antimycin A) or uncouplers (2,4-dinitrophenol). Neither the NO donors nor the respiratory chain blockers affected glycolysis in platelet homogenate. SNAP (20-100 microM) and SNP (50-200 microM) inhibited oxygen consumption by platelets. The effect of SNP and SNAP on glycolysis and respiration was not reduced by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, a selective inhibitor of NO-stimulated guanylate cyclase. SNAP (5-100 microM) and SNP (10-300 microM) inhibited the activity of platelet cytochrome oxidase and had no effect on NADH:ubiquinone oxidoreductase and succinate dehydrogenase. Blocking of the mitochondrial energy production by antimycin A slightly affected collagen-evoked aggregation and strongly inhibited platelet secretion. The results indicate that: 1) in porcine platelets NO is able to diminish mitochondrial energy production through the inhibition of cytochrome oxidase, 2) the inhibitory effect of NO on platelet secretion (but not aggregation) can be attributed to the reduction of mitochondrial energy production.  相似文献   
55.
Our previous studies demonstrated that oligomeric recombinant TCR ligands (RTL) can treat clinical signs of experimental autoimmune encephalomyelitis (EAE) and induce long-term T cell tolerance against encephalitogenic peptides. In the current study, we produced a monomeric I-A(s)/PLP 139-151 peptide construct (RTL401) suitable for use in SJL/J mice that develop relapsing disease after injection of PLP 139-151 peptide in CFA. RTL401 given i.v. or s.c. but not empty RTL400 or free PLP 139-151 peptide prevented relapses and significantly reduced clinical severity of EAE induced by PLP 139-151 peptide in SJL/J or (C57BL/6 x SJL)F(1) mice, but did not inhibit EAE induced by PLP 178-191 or MBP 84-104 peptides in SJL/J mice, or MOG 35-55 peptide in (C57BL/6 x SJL/J)F(1) mice. RTL treatment of EAE caused stable or enhanced T cell proliferation and secretion of IL-10 in the periphery, but reduced secretion of inflammatory cytokines and chemokines. In CNS, there was a modest reduction of inflammatory cells, reduced expression of very late activation Ag-4, lymphocyte function-associated Ag-1, and inflammatory cytokines, chemokines, and chemokine receptors, but enhanced expression of Th2-related factors, IL-10, TGF-beta3, and CCR3. These results suggest that monomeric RTL therapy induces a cytokine switch that curbs the encephalitogenic potential of PLP 139-151-specific T cells without fully preventing their entry into CNS, wherein they reduce the severity of inflammation. This mechanism differs from that observed using oligomeric RTL therapy in other EAE models. These results strongly support the clinical application of this novel class of peptide/MHC class II constructs in patients with multiple sclerosis who have focused T cell responses to known encephalitogenic myelin peptides.  相似文献   
56.
57.
Induction of stroke not only produces local ischemia and brain damage, but also has profound effects on peripheral immune responses. In the current study, we evaluated effects on spleen and blood cells 4 days after stroke induction. Surprisingly, there was a less inflammatory cytokine profile in the middle cerebral artery occlusion-affected right brain hemisphere at 96 h compared with earlier time points. Moreover, our results demonstrate that stroke leads to splenic atrophy characterized by a reduction in organ size, a drastic loss of splenocyte numbers, and induction of annexin V+ and TUNEL+ cells within the spleen that are in the late stages of apoptosis. The consequence of this process was to reduce T cell proliferation responses and secretion of inflammatory cytokines, resulting in a state of profound immunosuppression. These changes produced a drastic reduction in B cell numbers in spleen and blood, and a novel increase in CD4+FoxP3+ regulatory T cells. Moreover, we detected a striking increase in the percentage of nonapoptotic CD11b+ VLA-4-negative macrophages/monocytes in blood. Immunosuppression in response to brain injury may account for the reduction of inflammatory factors in the stroke-affected brain, but also potentially could curtail protective immune responses in the periphery. These findings provide new evidence to support the contention that damage to the brain caused by cerebral ischemia provides a powerful negative signal to the peripheral immune system that ultimately induces a drastic state of immunosuppression caused by cell death as well as an increased presence of CD4+FoxP3+ regulatory T cells.  相似文献   
58.
Immuno-proteasome is thought to be responsible for the processing of intracellular antigens and is induced when cells are treated with the inflammatory cytokines promoting cellular immunity. We tested the possibility that immuno-proteasome can be up-regulated in renal cells exposed to a long-lasting ischemia and inflammation in an experimental model of two-kidney, one-clip renovascular hypertension in the rat. Western blotting showed that immuno-proteasome subunit, LMP7, was up-regulated in the clipped ischemic kidney that was atrophic, but not in the contralateral unclipped kidney that underwent compensatory hypertrophy. Immunohistochemical analysis revealed that LMP7 was highly expressed in cortical epithelial and endothelial cells of the ischemic kidney. Surprisingly, the second immuno-subunit, LMP2, was almost undetectable, indicating that renal ischemia may induce exclusively the LMP7 subunit. We also found that renal ischemia neither reduced the SDS-stimulated proteasomal activity nor affected a high level of the PA28 activator. Thus, the results provide evidence that LMP7 immuno-subunit is induced in renal cells exposed to a long-lasting renal ischemia and inflammation, and that there is a direct link between LMP induction and renal atrophy. This opens an opportunity to study a role for LMP-containing proteasomes in the kidneys and other organs undergoing reduction in mass in diseases accompanied by a long-lasting ischemia and inflammatory responses.  相似文献   
59.
60.
We are using polymer templates to grow artificial artery grafts in vivo for the replacement of diseased blood vessels. We have previously shown that adhesion of macrophages to the template starts the graft formation. We present a study of the mechanics of macrophage adhesion to these templates on a single cell and single bond level with optical tweezers. For whole cells, in vitro cell adhesion densities decreased significantly from polymer templates polyethylene to silicone to Tygon (167, 135, and 65 cells/mm(2)). These cell densities were correlated with the graft formation success rate (50%, 25%, and 0%). Single-bond rupture forces at a loading rate of 450 pN/s were quantified by adhesion of trapped 2-microm spheres to macrophages. Rupture force distributions were dominated by nonspecific adhesion (forces <40 pN). On polystyrene, preadsorption of fibronectin or presence of serum proteins in the cell medium significantly enhanced adhesion strength from a mean rupture force of 20 pN to 28 pN or 33 pN, respectively. The enhancement of adhesion by fibronectin and serum is additive (mean rupture force of 43 pN). The fraction of specific binding forces in the presence of serum was similar for polystyrene and polymethyl-methacrylate, but specific binding forces were not observed for silica. Again, we found correlation to in vivo experiments, where the density of adherent cells is higher on polystyrene than on silica templates, and can be further enhanced by fibronectin adsorption. These findings show that in vitro adhesion testing can be used for template optimization and to substitute for in-vivo experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号