首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   54篇
  国内免费   32篇
  521篇
  2022年   10篇
  2021年   8篇
  2020年   4篇
  2017年   7篇
  2016年   10篇
  2015年   10篇
  2014年   12篇
  2013年   13篇
  2012年   20篇
  2011年   23篇
  2010年   14篇
  2009年   10篇
  2008年   12篇
  2007年   14篇
  2006年   14篇
  2005年   18篇
  2004年   13篇
  2003年   17篇
  2002年   25篇
  2001年   13篇
  2000年   12篇
  1999年   16篇
  1998年   8篇
  1996年   7篇
  1995年   6篇
  1994年   8篇
  1993年   7篇
  1992年   12篇
  1991年   12篇
  1990年   9篇
  1989年   10篇
  1988年   10篇
  1987年   14篇
  1986年   20篇
  1985年   4篇
  1984年   4篇
  1983年   10篇
  1982年   9篇
  1981年   6篇
  1979年   8篇
  1978年   3篇
  1977年   3篇
  1976年   5篇
  1975年   4篇
  1974年   7篇
  1971年   3篇
  1970年   5篇
  1969年   4篇
  1968年   3篇
  1966年   3篇
排序方式: 共有521条查询结果,搜索用时 15 毫秒
11.
12.
13.
羊草与其主要伴生种竞争与共存的格局分析   总被引:4,自引:3,他引:4  
在羊草种群与其它植物种群的交错区,应用频度、格避形式,格局强度指数对羊草及其主要伴生种之间的共存格局进行了分析。结果表明,羊草及其主要伴生种的格局呈多样化,集聚格局形式是羊草抵御外来物种入侵,或者是自身扩散的一种对策,羊草与其主要伴生种之间存在竞争与共存作用,羊草与芦苇之间通过拮抗作用实现竞争与共存,羊草与鸡儿肠通过竞争而实现共存,光稃茅香,碱茅以营养繁殖策略实现与羊草竞争,指子茅的生长受羊草竞争的抑制。  相似文献   
14.
Chen JH  Ozanne SE  Hales CN 《DNA Repair》2005,4(10):1140-1148
The development of cellular senescence both by replication and by oxidative stress is not homogenous in cultured primary human fibroblasts. To investigate whether this is due to the heterogeneity in the susceptibility of DNA in different phases of the cell cycle, we subjected synchronised cells to oxidative stress and examined the extent of DNA damage and its long-term effects on the induction of cellular senescence. Here, we first show marked heterogeneity in DNA damage as detected by markers of double strand breaks caused by oxidative stress in an asynchronous human fibroblast culture. Cell cycle synchronization followed by oxidative stress demonstrated that DNA in S-phase is most susceptible to oxidative stress whereas DNA in the quiescent phase is most resistant. DNA repair is an ongoing process after sensing DNA damage; reparable DNA damage is repaired even in cells that contain persistent DNA damage. The extent of persistent DNA damage is tightly correlated with permanent cessation of DNA replication and SA-beta-gal activity. Oxidative stress encountered by cells in S-phase resulted in more persistent DNA damage, more permanent cell cycle arrest and the induction of premature senescence.  相似文献   
15.
The postnatal development in male Sprague-Dawley rats of hepatic glutathione S-transferase B (ligandin) in relation to the other glutathione S-transferases is described. The concentration of glutathione S-transferase B in 1-day-old male rats is about one-fifth of that in adult animals. The enzyme reaches adult concentrations 4-5 weeks later. When assessed by substrate specificity or immunologically, the proportion of transferase B relative to the other glutathione S-transferases is high during the first week after birth. At this age, 67.5% of the transferase activity towards 1-chloro-2,4-dinitrobenzene is immunoprecipitable by anti-(transferase B), compared with about 50% in adults and older pups. Between the second and the fifth postnatal week, the fraction of transferase B increases in parallel fashion with the other transferases in hepatic cytosol. Neither L-thyroxine nor cortisol induce a precocious increase in glutathione S-transferase activity. Phenobarbital did induce transferase activity towards 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene in both pups and adults. The extent of induction by phenobarbital was a function of basal activity during development such that the percentage stimulation remained constant from 5 days postnatally to adulthood.  相似文献   
16.
The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features.  相似文献   
17.

Background  

The present study aimed to evaluate the efficacy of the hyaluronic acid (HA) binding assay in the selection of motile spermatozoa with normal morphology at high magnification (8400x).  相似文献   
18.
Fever and regional blood flows in wethers and parturient ewes   总被引:1,自引:0,他引:1  
To determine whether the reported absence of fever in full-term-pregnant ewes might be associated with shifts of regional blood flows from thermogenic tissues to placenta during this critical period, fevers were induced twice by injections of Escherichia coli lipopolysaccharide (LPS, 0.25 microgram/kg iv) into each of six Merino ewes from 8 to 1 days prepartum, and their regional blood flow distribution was measured with radioactive, 15-microns-diam microspheres before and during the rise in fever (when their rectal temperature had risen approximately 0.4 degree C). Unexpectedly, fever always developed, rising to heights not significantly different at any time before parturition [4-8 days prepartum = 0.81 +/- 0.23 degree C (SE); 1-3 days prepartum = 0.75 +/- 0.17 degree C) and similar to those in three wethers treated similarly (0.90 +/- 0.10 degree C). Generally, during rising fever, blood flow in the ewes shifted away from heat loss tissues (e.g., skin, nose) to heat production tissues (e.g., shivering muscle, fat) and cardiac output increased; blood flow through redistribution organs (e.g., splanchnic bed) decreased. The reverse occurred during defervescence. Utero-placental blood flow remained high in the febrile ewes. These regional blood flow distributions during febrigenesis and lysis are essentially the same as those during exposures to ambient cold and heat, respectively. Some differences in the responses of cardiac output and its redistribution, however, were apparent between wethers and pregnant ewes. We conclude that 1) the previously reported "absence of fever in the full-term-pregnant sheep" should not be regarded as a general phenomenon and 2) full-term-pregnant sheep support fever production without sacrificing placental blood flow.  相似文献   
19.
The glutathione S-transferases that were purified to homogeneity from liver cytosol have overlapping but distinct substrate specificities and different isoelectric points. This report explores the possibility of using preparative electrofocusing to compare the composition of the transferases in liver and kidney cytosol. Hepatic cytosol from adult male Sprague–Dawley rats was resolved by isoelectric focusing on Sephadex columns into five peaks of transferase activity, each with characteristic substrate specificity. The first four peaks of transferase activity (in order of decreasing basicity) are identified as transferases AA, B, A and C respectively, on the basis of substrate specificity, but the fifth peak (pI6.6) does not correspond to a previously described transferase. Isoelectric focusing of renal cytosol resolves only three major peaks of transferase activity, each with narrow substrate specificity. In the kidney, peak 1 (pI9.0) has most of the activity toward 1-chloro-2,4-dinitrobenzene, peak 2 (pI8.5) toward p-nitrobenzyl chloride, and peak 3 (pI7.0) toward trans-4-phenylbut-3-en-2-one. Renal transferase peak 1 (pI9.0) appears to correspond to transferase B on the basis of pI, substrate specificity and antigenicity. Kidney transferase peaks 2 (pI8.5) and 3 (pI7.0) do not correspond to previously described glutathione S-transferases, although kidney transferase peak 3 is similar to the transferase peak 5 from focused hepatic cytosol. Transferases A and C were not found in kidney cytosol, and transferase AA was detected in only one out of six replicates. Thus it is important to recognize the contribution of individual transferases to total transferase activity in that each transferase may be regulated independently.  相似文献   
20.
Data for the historical years 1970 and 1995 and the FAO-Agriculture Towards 2030 projection are used to calculate N inputs (N fertilizer, animal manure, biological N fixation and atmospheric deposition) and the N export from the field in harvested crops and grass and grass consumption by grazing animals. In most industrialized countries we see a gradual increase of the overall N recovery of the intensive agricultural production systems over the whole 1970-2030 period. In contrast, low N input systems in many developing countries sustained low crop yields for many years but at the cost of soil fertility by depleting soil nutrient pools. In most developing countries the N recovery will increase in the coming decades by increasing efficiencies of N use in both crop and livestock production systems. The surface balance surplus of N is lost from the agricultural system via different pathways, including NH3 volatilization, denitrification, N2O and NO emissions, and nitrate leaching from the root zone. Global NH3-N emissions from fertilizer and animal manure application and stored manure increased from 18 to 34 Tg·yr-1 between 1970 and 1995, and will further increase to 44 Tg·yr-1 in 2030. Similar developments are seen for N2O-N (2.0 Tg·yr-1 in 1970, 2.7 Tg·yr-1 in 1995 and 3.5 Tg·yr-1 in 2030) and NO-N emissions (1.1 Tg·yr-1 in 1970, 1.5Tg·yr-1 in 1995 and 2.0 Tg·yr-1 in 2030).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号