首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2014年   2篇
  2012年   4篇
  2011年   5篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  1997年   1篇
排序方式: 共有36条查询结果,搜索用时 156 毫秒
31.
32.
Inwardly rectifying potassium (Kir) channels in Müller glia play a critical role in the spatial buffering of potassium ions that accumulate during retinal activity. To this end, Kir channels show a polarized subcellular distribution with the predominant channel subunit in Müller glia, Kir4.1, clustered in the endfeet of these cells at the inner limiting membrane. However, the molecular mechanisms underlying their distribution have yet to be identified. Here, we show that laminin, agrin and alpha-dystroglycan (DG) codistribute with Kir4.1 at the inner limiting membrane in the retina and that laminin-1 induces the clustering of alpha-DG, syntrophin and Kir4.1 in Müller cell cultures. In addition, we found that alpha-DG clusters were enriched for agrin and sought to investigate the role of agrin in their formation using recombinant C-agrins. Both C-agrin 4,8 and C-agrin 0,0 failed to induce alpha-DG clustering and neither of them potentiated the alpha-DG clustering induced by laminin-1. Finally, our data reveal that deletion of the PDZ-ligand domain of Kir4.1 prevents their laminin-induced clustering. These findings indicate that both laminin-1 and alpha-DG are involved in the distribution of Kir4.1 to specific Müller cell membrane domains and that this process occurs via a PDZ-domain-mediated interaction. Thus, in the basal lamina laminin is an essential regulator involved in clearing excess potassium released during neuronal activity, thereby contributing to the maintenance of normal synaptic transmission in the retina.  相似文献   
33.
It has recently been discovered that glutathione-dependent formaldehyde dehydrogenase (FALDH) exhibits a strong S-nitrosoglutathione reductase activity. Plants use NO and S-nitrosothiols as signaling molecules to activate defense mechanisms. Therefore, it is interesting to investigate the regulation of FALDH by mechanical wounding and plant hormones involved in signal transduction. Our results show that the gene encoding FALDH in Arabidopsis (ADH2) is down-regulated by wounding and activated by salicylic acid (SA). In tobacco, FALDH levels and enzymatic activity decreased after jasmonate treatment, and increased in response to SA. This is the first time that regulation of FALDH in response to signals associated with plant defense has been demonstrated.  相似文献   
34.
DNA vaccination is a simple and efficient method for the induction of cytotoxic T lymphocytes (CTLs). In the present study, we have examined the effect of the mutations of each of the 12 amino acids of the HBsAg Ld-restricted CTL epitope on the ability of the modified proteins to induce CTLs after DNA-based immunization. Replacement of glutamine or serine by alanine codons in the whole envelope gene created a protein that induced higher CTL activity against cells bearing the wildtype peptide-MHC complex than against the wildtype sequence itself. These results represent the first example of immunogenic mutant sequences (superagonists) that induce higher CTL activity against the wildtype CTL epitope than does the wildtype protein. Because the entire mutant protein is being expressed from the modified plasmid, any of the various steps in epitope processing could be affected by the mutations and lead to increased class I immunogenicity of the peptide sequence.  相似文献   
35.
The Rb/E2F complex represses S-phase genes both in cycling cells and in cells that have permanently exited from the cell cycle and entered a terminal differentiation pathway. Here we show that S-phase gene repression, which involves histone-modifying enzymes, occurs through distinct mechanisms in these two situations. We used chromatin immunoprecipitation to show that methylation of histone H3 lysine 9 (H3K9) occurs at several Rb/E2F target promoters in differentiating cells but not in cycling cells. Furthermore, phenotypic knock-down experiments using siRNAs showed that the histone methyltransferase Suv39h is required for histone H3K9 methylation and subsequent repression of S-phase gene promoters in differentiating cells, but not in cycling cells. These results indicate that the E2F target gene permanent silencing mechanism that is triggered upon terminal differentiation is distinct from the transient repression mechanism in cycling cells. Finally, Suv39h-depleted myoblasts were unable to express early or late muscle differentiation markers. Thus, appropriately timed H3K9 methylation by Suv39h seems to be part of the control switch for exiting the cell cycle and entering differentiation.  相似文献   
36.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号