首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   5篇
  49篇
  2024年   1篇
  2022年   1篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2013年   7篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1994年   1篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
21.
Quercus species have a plethora of applications, either in wine and wood industries, in human and animal nutrition or in human health. In order to improve the knowledge on this genus, the aim of the present study was to correlate, for the first time, the phenolic composition of different Quercus ilex L. plant tissues (leaves in two maturation stages, acorns, teguments and cotyledons) and different extraction procedures with scavenging and anticholinesterase activities. The hydromethanolic and aqueous extracts obtained showed strong radical scavenging activity against DPPH, superoxide anion radical and nitric oxide radical, leaves exhibiting higher total phenolic content and revealing the best antioxidant properties, followed by tegument and acorns. Concerning the phenolic profile, fifteen compounds were identified and quantified by HPLC‐DAD, ranging from 1568.43 to 45,803.16 mg/kg dried extract. The results indicate that Qilex can be a source of strong antioxidant phenolic compounds with possible interest for food and pharmaceutical industries.  相似文献   
22.
The immunoadhesin (OX2:Fc) comprising the extracellular domain of murine OX2 linked to IgG2aFc, inhibits production of IL-2 and IFN-gamma by activated T cells and increases allograft and xenograft survival in vivo. Increased expression of OX2 on dendritic cells (DC) in vivo following preimmunization via the portal vein is also associated with elevated expression of MD-1. We have used antisense oligodeoxynucleotides (ODNs) to MD-1 to investigate the effect of inhibition of expression of MD-1 by DC on their function as allostimulatory cells. We also investigated by FACS analysis the cell surface expression of OX2, CD80, and CD86 on DC incubated with ODN-1 blocking MD-1 expression. Blocking MD-1 gene expression inhibits surface expression of CD80 and CD86, but not of OX2. DC incubated with ODN-1 to MD-1 did not stimulate IL-2 or IFN-gamma production, but generated cells able to suppress, in a second culture of fresh DC plus allogeneic T cells, production of IL-2 and IFN-gamma. This inhibition was blocked by anti-OX2 mAb. Infusion of DC preincubated with ODN-1 prolonged renal allograft survival, an effect also reversed by anti-OX2 mAb. By FACS, incubation of DC with anti-MD-1 Ab to promote capping eliminated cell surface expression of MD-1 and CD14 without altering DEC205, DC26, CD80, CD86, or OX2 expression. Thus OX2 and MD-1 are independent surface molecules on DC that may reciprocally regulate T cell stimulation. MD-1 is linked to CD14, a "danger receptor complex," and activation of this complex can regulate cell surface expression of CD80/CD86, which signal T cells.  相似文献   
23.
In the production of biological therapeutics such as monoclonal antibodies (mAbs), ultrafiltration and diafiltration (UF/DF) are widely regarded as effective downstream processing steps capable of removing process equipment related leachables (PERLs) introduced upstream of the UF/DF step. However, clearance data available in the literature are limited to species with low partition coefficients (log P) such as buffer ions, hydrophilic organic compounds, and some metal ions. Additional data for a wide range of PERLs including hydrophobic compounds and elemental impurities are needed to establish meaningful, comprehensive safety risk assessments. Herein, we report the results from studies investigating the clearance of seven different organic PERLs representing a wide range of characteristics (i.e., log P (−0.3 to 18)), and four model elements with different chemical properties spiked into a mAb formulation at 10 ppm and analyzed during clearance using gas chromatography–mass spectrometry (GC–MS), liquid chromatography-photodiode-array-mass spectrometry (LC-PDA-MS), and inductively coupled plasma mass spectrometry (ICP-MS). The clearance data showed ideal clearance and sieving of spiked organic PERLs with log P < 4, partial clearance of PERLs with 4 < log P < 9, and poor clearance of highly hydrophobic PERLs (log P > 9) after nine diafiltration volumes (DVs). Supplemental clearance studies on seven additional PERLs present at much lower concentration levels (0.1–1.5 ppm) in the mAb formulation upstream of UF/DF and three PERLs associated with the tangential flow filtration (TFF) equipment also demonstrated the similar correlations between log P and % clearance. For model elements, the findings suggest that UF/DF in general provides ideal clearance for elements. Evidence showed that the UF/DF process does not only help mitigate leachables risk from PERLs introduced upstream of UF/DF, but also from the TFF operation itself as all three TFF-related PERLs were effectively cleared. Overall, the UF/DF clearance presented in this work demonstrated whereas highly hydrophobic PERLs and elements that exist as charged species, particularly transition metal ions, may not be as effectively cleared and thus warrant further risk assessment; hydrophilic and some hydrophobic PERLs (log P < 4) are indeed well-cleared and thus present a lower overall safety risk.  相似文献   
24.
25.
Abstract

The interaction of the [Mn(mef)2(phen)H2O] complex in which mef is mefenamic acid drug and phen is 1,10 phenanthrolin ligand with calf thymus DNA (ct-DNA) was studied by using different spectroscopic methods, molecular docking and viscometery. The competitive fluorescence and UV–Vis absorption spectroscopy indicated that the complex interacted with ctDNA via intercalating binding mode with the binding constant of 1.16?×?104 Lmol?1. The thermodynamic studies showed that the reaction between the complex and ctDNA is exothermic. Furthermore, the complex induced changes in DNA viscosity. Circular dichroism spectroscopy (CD) was employed to measure the conformational changes of ctDNA in the presence of the complex and verified intercalation binding mode. The molecular modeling results illustrated that the complex interacted via intercalation by relative binding energy of ?28.45?kJ mol?1.  相似文献   
26.
Signaling through the hypoxia‐inducible factor hif‐1 controls longevity, metabolism, and stress resistance in Caenorhabditis elegans. Hypoxia‐inducible factor (HIF) protein levels are regulated through an evolutionarily conserved ubiquitin ligase complex. Mutations in the VHL gene, encoding a core component of this complex, cause a multitumor syndrome and renal cell carcinoma in humans. In the nematode, deficiency in vhl‐1 promotes longevity mediated through HIF‐1 stabilization. However, this longevity assurance pathway is not yet understood. Here, we identify folliculin (FLCN) as a novel interactor of the hif‐1/vhl‐1 longevity pathway. FLCN mutations cause Birt–Hogg–Dubé syndrome in humans, another tumor syndrome with renal tumorigenesis reminiscent of the VHL disease. Loss of the C. elegans ortholog of FLCN F22D3.2 significantly increased lifespan and enhanced stress resistance in a hif‐1‐dependent manner. F22D3.2, vhl‐1, and hif‐1 control longevity by a mechanism distinct from insulin‐like signaling. Daf‐16 deficiency did not abrogate the increase in lifespan mediated by flcn‐1. These findings define FLCN as a player in HIF‐dependent longevity signaling and connect organismal aging, stress resistance, and regulation of longevity with the formation of renal cell carcinoma.  相似文献   
27.
In selected mammalian tissues, long chain fatty acid transporters (FABPpm, FAT/CD36, FATP1, and FATP4) are co-expressed. There is controversy as to whether they all function as membrane-bound transporters and whether they channel fatty acids to oxidation and/or esterification. Among skeletal muscles, the protein expression of FABPpm, FAT/CD36, and FATP4, but not FATP1, correlated highly with the capacities for oxidative metabolism (r ≥ 0.94), fatty acid oxidation (r ≥ 0.88), and triacylglycerol esterification (r ≥ 0.87). We overexpressed independently FABPpm, FAT/CD36, FATP1, and FATP4, within a normal physiologic range, in rat skeletal muscle, to determine the effects on fatty acid transport and metabolism. Independent overexpression of each fatty acid transporter occurred without altering either the expression or plasmalemmal content of other fatty acid transporters. All transporters increased fatty acid transport, but FAT/CD36 and FATP4 were 2.3- and 1.7-fold more effective than FABPpm and FATP1, respectively. Fatty acid transporters failed to alter the rates of fatty acid esterification into triacylglycerols. In contrast, all transporters increased the rates of long chain fatty acid oxidation, but the effects of FABPpm and FAT/CD36 were 3-fold greater than for FATP1 and FATP4. Thus, fatty acid transporters exhibit different capacities for fatty acid transport and metabolism. In vivo, FAT/CD36 and FATP4 are the most effective fatty acid transporters, whereas FABPpm and FAT/CD36 are key for stimulating fatty acid oxidation.Uptake of long chain fatty acids across the plasma membrane had long been considered to occur via passive diffusion. However, in recent years, there has been a fundamental shift in our understanding, and it is now widely recognized that long chain fatty acids cross the plasma membrane via a protein-mediated mechanism (for reviews, see Refs. 13). A number of fatty acid transporters have been identified, including fatty acid translocase/CD36 (FAT/CD36), plasma membrane-associated fatty acid binding proteins (FABPpm), and a family of fatty acid transport proteins (FATP1–6)5 (for reviews, see Refs. 1 and 4). Selected stimuli (muscle contraction, insulin, and AICAR) induce the translocation of selected fatty acid transporters (FABPpm, FAT/CD36, and FATP1) from an intracellular depot to the plasma membrane, in both heart and skeletal muscle, resulting in concurrently increased rates of fatty acid transport (for a review, see Ref. 1). Some fatty acid transporters have now also been implicated in the dysregulation of fatty acid metabolism in heart and skeletal muscle in models of insulin resistance and type 1 and 2 diabetes, including FAT/CD36 (59), FATP1 (10, 11), and possibly FATP4 (11, 12) but not FABPpm (57). Thus, in recent years, it has become widely accepted that (a) long chain fatty acids traverse the plasma membrane via a protein-mediated mechanism and (b) some of the fatty acid transporters are central to the dysregulation in skeletal muscle fatty acid metabolism in obesity and type 2 diabetes.In vivo, many of the fatty acid transporters are frequently co-expressed in different tissues. FAT/CD36 and FABPpm are ubiquitously expressed (1), whereas FATP1–6 exhibit a somewhat tissue-specific distribution pattern (13, 14). The reason for the co-expression of different fatty acid transporters within the same tissue remains unclear. It has been speculated that selected fatty acid transporters may need to interact with each other (15, 16). Alternatively, it is also possible that (a) different fatty acid transporters have discrepant transport capacities, and (b) selected transporters may channel fatty acids differentially to fatty acid oxidation and esterification into triacylglycerols in mammalian tissue.Recent evidence has shown that the transport capacities among FATPs can differ substantially, as revealed by overexpression (14, 17, 18) or knockdown studies (19), but there is little agreement as to which FATP is most effective. Extensive studies by DiRusso et al. (17) in yeast revealed that when FATP1–6 were overexpressed to similar levels (qualitative assessment), FATP4 exhibited 1.7- and 3-fold greater fatty acid transport effectiveness compared with FATP1 and FATP2, respectively, whereas no fatty acid transport capacities were attributable to FATP3, -5, and -6 (17). In contrast, in HEK293 cells, the FATP6 transport capacity was 3- and 6.5-fold greater than FATP1 and FATP4, respectively (14), whereas in 3T3-L1 adipocytes, a fatty acid transport role was evident only for FATP1 and not FATP4 (19). Others have also questioned the transport role of FATP4 (20). These discrepant findings with respect to the transport effectiveness of FATPs may reflect, in part, the use of diverse cell types with ill defined metabolic needs and/or machinery for fatty acid uptake and metabolism. Indeed, several recent reports indicate that fatty acid transport cannot be adequately examined in some cells, because these appear to lack accessory proteins that may be involved in fatty acid transport (21, 22). In addition, extrapolation of results from cultured cells to metabolically important tissue in vivo may also be problematic, since cells and mammalian tissues probably have different requirements for fatty acid utilization, and their regulation of fatty acid uptake may also differ. For example, the mechanisms regulating the acute contraction-induced up-regulation of fatty acid transport and oxidation, such as occurs in heart and skeletal muscle, is probably absent in selected cell cultures.Assessment of fatty acid transporter effectiveness, in vivo, cannot be determined in knock-out animals, since compensatory responses in some fatty acid transporters (FATP1 and -4) occur when another fatty acid transporter (FAT/CD36) has been ablated (23, 24). Thus, the relative effectiveness of selected fatty acid transporters on fatty acid transport in vivo remains unknown. In addition, whether fatty acid transporters channel fatty acids to a particular metabolic fate, as has been suggested based on studies in cultured cells (18, 19, 25), may depend on the cell type being examined.It is desirable to discern the effectiveness of selected fatty acid transporters in mammalian tissues that have a well known system for transporting and utilizing fatty acids and in which fatty acid transporters can be independently up-regulated without disturbing the expression of other fatty acid transporters. These criteria can be satisfied in rat skeletal muscle in which genes can be up-regulated under controlled conditions within a physiologically meaningful range (2628). Therefore, in the present study, we have compared the independent transport effectiveness of fatty acid transporters (FABPpm, FAT/CD36, FATP1, and FATP4) in skeletal muscle, without disturbing the expression and plasmalemmal content of other fatty acid transporters. In addition, we also examined the contributions of these transporters to fatty acid oxidation and esterification into triacylglycerols. These are the first studies to reveal that in vivo (a) the fatty acid transport effectiveness of fatty acid transporters differs considerably, and (b) in skeletal muscle, these transporters serve to channel fatty acids to oxidation, not esterification into triacylglycerols.  相似文献   
28.
Selective breeding of animals for increased innate resistance offers an attractive strategy to control disease in agriculture. However, this approach is limited by an incomplete knowledge of the heritability, duration, and mechanism(s) of resistance, as well as the impact of selection on the immune response to unrelated pathogens. Herein, as part of a rainbow trout broodstock improvement program, we evaluated factors involved in resistance against a bacterial disease agent, Flavobacterium psychrophilum. In 2005, 71 full-sibling crosses, weighing an average of 2.4 g, were screened, and resistant and susceptible crosses were identified. Naive cohorts were evaluated at 10 and 800 g in size, and most maintained their original relative resistant or susceptible phenotypes, indicating that these traits were stable as size increased >300-fold. During the course of these studies, we observed that the normalized spleen weights of the resistant fish crosses were greater than those of the susceptible fish crosses. To test for direct association, we determined the spleen-somatic index of 103 fish crosses; created high, medium, and low spleen-index groups; and determined survival following challenge with F. psychrophilum or Yersinia ruckeri. Consistent with our previous observations, trout with larger spleen indices were significantly more resistant to F. psychrophilum challenge; however, this result was pathogen-specific, as there was no correlation of spleen size with survival following Y. ruckeri challenge. To our knowledge, this is the first report of a positive association between spleen size and disease resistance in a teleost fish. Further evaluation of spleen index as an indirect measure of disease resistance is warranted.  相似文献   
29.
The molecular interactions of poly(ADP-ribose) polymerase I (PARP I) and topoisomerase I (Topo I) have been determined by the analysis of physical binding of the two proteins and some of their polypeptide components and by the effect of PARP I on the enzymatic catalysis of Topo I. Direct association of Topo I and PARP I as well as the binding of two Topo I polypeptides to PARP I are demonstrated. The effect of PARP I on the 'global' Topo I reaction (scission and religation), and the activation of Topo I by the 36 kDa polypeptide of PARP I and catalytic modifications by poly(ADP-ribosyl)ation are also shown. The covalent binding of Topo I to circular DNA is activated by PARP I similar to the degree of activation of the 'global' Topo I reaction, whereas the religation of DNA is unaffected by PARP I. The geometry of PARP I-Topo I interaction compared to automodified PARP I was reconstructed from direct binding assays between glutathione S-transferase fusion polypeptides of Topo I and PARP I demonstrating highly selective binding, which was correlated with amino acid sequences and with the 'C clamp' model derived from X-ray crystallography.  相似文献   
30.
We tested the hypotheses that continuous total peripheral resistance (TPR) measurements are superior to intermittent data collection and that variables related to TPR can be used to distinguish between survivors and nonsurvivors (NS), respectively, of prolonged hemorrhagic hypotension (HH). One week after a transit-time ultrasound probe was implanted on their ascending aortas, 21 rats were subjected to 4 h of HH at 40 mmHg. Measurements were made before and up to 4 h after initiation of HH. Additional bleeding or Ringer L-lactate (RL) infusion was used to maintain HH. TPR was continuously measured online using recordings of blood flow and arterial pressure. Approximately 67% of the rats survived > or =3 h; others were considered NS. Data collected at 30-min intervals failed to detect the maximum value of TPR (TPRmax). The times to reach TPRmax were similar for survivors and NS and were strongly correlated with the bleeding end points and with the RL infusion-onset times. However, survivors showed higher TPRmax values than NS (P <0.005) and had a significantly longer period than NS during which TPR was above baseline level (116 +/- 20 vs. 51 +/- 10 min). In conclusion, 1) the transit-time ultrasound technique at high sampling rate allowed continuous and accurate real-time monitoring of TPR, 2) the bleeding end point and RL infusion-onset times may be used as surrogates of the time to TPRmax, 3) TPRmax of survivors and NS could be detected only using a continuous TPR measurement, and 4) differences between survivors and NS could be revealed by the continuous TPR curve.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号