首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1343篇
  免费   140篇
  1483篇
  2022年   7篇
  2021年   16篇
  2020年   11篇
  2019年   11篇
  2018年   16篇
  2017年   17篇
  2016年   33篇
  2015年   44篇
  2014年   61篇
  2013年   58篇
  2012年   82篇
  2011年   77篇
  2010年   59篇
  2009年   45篇
  2008年   70篇
  2007年   75篇
  2006年   67篇
  2005年   79篇
  2004年   84篇
  2003年   57篇
  2002年   56篇
  2001年   48篇
  2000年   64篇
  1999年   44篇
  1998年   25篇
  1997年   14篇
  1996年   14篇
  1995年   11篇
  1994年   15篇
  1993年   7篇
  1992年   28篇
  1991年   28篇
  1990年   22篇
  1989年   22篇
  1988年   18篇
  1987年   18篇
  1986年   12篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1981年   6篇
  1980年   6篇
  1979年   6篇
  1978年   7篇
  1977年   5篇
  1976年   7篇
  1975年   3篇
  1968年   2篇
  1965年   3篇
  1959年   2篇
排序方式: 共有1483条查询结果,搜索用时 15 毫秒
21.
Kyu Rhee 《EMBO reports》2013,14(11):949-950
Two recent studies in PNAS and Nat Chem Biol highlight the power of modern mass-spectrometry techniques for enzyme discovery applied to microbiology. In so doing, they have uncovered new potential targets for the treatment of tuberculosis.Proc Natl Acad Sci USA (2013) 110 28, 11320–11325 doi: 10.1073/pnas.1221597110Nat Chem Biol (2013). doi:10.1038/nchembio.1355. Advance online publication 29 September 2013Many have come to regard metabolism as a well-understood housekeeping activity of all cells, functionally compartmentalized away from other biological processes. However, growing reports of unexpected links between a diverse range of disease states and specific metabolic enzymes or pathways have begun to challenge this view. In doing so, such discoveries have exposed more glaring, and neglected, deficiencies in our understanding of cellular metabolism, triggering a broad resurgence of interest in metabolism.“Metabolomics […] offers a global window into the biochemical state of a cell or organism…”Metabolomics is the newest of the systems-level disciplines and seeks to reveal the physiological state of a given cell or organism through the global and unbiased study of its small-molecule metabolites [1]. Metabolites are the final products of enzymes and enzyme networks, the substrates and products of which often cannot be deduced from genetic information and the levels of which reflect the integrated product of the genome, proteome and environment [2]. Metabolomics thus offers a global window into the biochemical state of a cell or organism, made experimentally possible by the unprecedented discriminatory power and sensitivity of modern mass-spectrometry-based technologies (Fig 1). Two recent reports from the Carvalho and Neyrolles groups, published recently in Proceedings of the National Academy of Science USA and Nature Chemical Biology [3,4], exemplify the rapidly growing impact of metabolomics-based approaches on tuberculosis research.Open in a separate windowFigure 1Modern mass spectrometry illuminates bacterial metabolism. A comparison of activity-based metabolomic profiling with classic metabolic tracing. See the text for details.Within the field of infectious diseases, the deficiencies in our understanding of microbial metabolism have emerged most prominently in the area of tuberculosis research. Despite the development of the first chemotherapies more than 50 years ago, tuberculosis remains the leading bacterial cause of death worldwide, due in part to a failure to keep pace with the emergence of drug resistance [5]. The causes of this shortfall are multifactorial. However, a key contributing factor is our incomplete understanding of the metabolic properties of Mycobacterium tuberculosis (Mtb), its aetiological agent. Unlike most bacterial pathogens, Mtb infects humans as its only known host and reservoir, within whom it resides largely isolated from other microbes. Mtb has thus evolved its metabolism to serve interdependent physiological and pathogenic roles. Yet, more than a century after Koch''s initial discovery of Mtb and 15 years after the first publication of its genome sequence, knowledge of Mtb''s metabolic network remains surprisingly incomplete [6,7,8].“…tuberculosis remains the leading bacterial cause of death worldwide…”As for almost all sequenced microbial genomes, homology-based in silico approaches have failed to suggest a function for nearly 40% of Mtb genes that, presumably, include a significant number of orphan enzyme activities for which no gene has been ascribed [8]. Such approaches have further neglected the impact of evolutionary selection and its ability to dissociate sequence conservation from biochemical activity and physiological function, in order to help optimize the fitness of a given organism within its specific niche. For Mtb, such genes and enzymes represent an especially promising and biologically selective, but untapped, source of potential drug targets.In the study from the Carvalho group, successful application of a recently developed metabolomics assay—known as activity-based metabolomic profiling (ABMP)—allowed the authors to reassign a putatively annotated nucleotide phosphatase (Rv1692) as a D,L-glycerol 3-phosphate phosphatase [3,9]. ABMP was specifically developed to identify enzymatic activities for genes of unknown function by leveraging the analytical discriminatory power of liquid-chromatography-coupled high-resolution mass spectrometry (LC-MS) to analyse the impact of a recombinant enzyme and potential co-factors on a highly concentrated, small-molecule extract derived from the homologous organism (Fig 1). By monitoring for the matched time and enzyme-dependent depletion and accumulation of putative substrates and products, this assay enables the discovery of catalytic activities—rather than simple binding—by using the cellular metabolome as arguably the most physiological chemical library of potential substrates that can be tested, in a label and synthesis-free manner. Moreover, candidate activities assigned by this method can be confirmed by using independent biochemical approaches—such as reconstitution with purified components—and genetic techniques—such as wild-type and genetic knockout, knockdown or overexpression strains. In reassigning Rv1692 as a glycerol phosphate phosphatase, rather than a nucleotide phosphatase, Carvalho and colleagues demonstrate the potential of ABMP to overcome the biochemical challenge of assigning substrate specificity to a member of a large enzyme superfamily—in this case, the haloacid dehydrogenase superfamily. But, perhaps more significantly, they also direct new biological attention to the largely neglected area of Mtb membrane homeostasis, in which Rv1692 might play an important role in glycerophospholipid recycling and catabolism.“…knowledge of Mtb''s metabolic network remains surprisingly incomplete”Neyrolles and colleagues make use of the same metabolomics platform to perform metabolite-tracing studies by using stable-isotope-labelled precursors, which led them to reassign a putatively annotated asparagine transporter (AnsP1) as an aspartate transporter. AnsP1 bears 55% sequence identity and 70% similarity to an orthologue in Salmonella that belongs to the amino acid transporter family 2.A.3.1, whereas aspartate transporters are typically members of the dicarboxylate amino acid:cation symporter family 2.A.23 [4]. This study demonstrates the ability of metabolomic platforms to not only characterize the activity of a given protein within its natural physiological milieu, but also revive classical experimental methods by using modern technologies. The availability of stable (non-radioactive) isotopically labelled precursors has now made it possible to resolve their specific metabolic fates. In this case, such an approach revealed that Mtb can use aspartate as both a carbon and nitrogen source, after its uptake through AnsP1. Looking beyond the specific biochemical assignment of AnsP1 as an aspartate—rather than asparagine—transporter, this study illustrates the potential impact of such discoveries on downstream paths of investigation. In this case, the remarkable application of high-resolution dynamic secondary ion mass spectroscopy to provide the first direct biochemical images of the nutritional environment of the Mtb-infected phagosome.New technologies are often developed in the context of specific needs. However, their impact is usually not realized until extended beyond such contexts, sometimes resulting in major paradigm shifts. The above examples highlight just two emerging possibilities of how metabolomics technologies can be extended beyond the context of global comparisons and provide unique biological insights. To the extent that the analytical power of these platforms can be adapted to other functional approaches, metabolomics promises to pay handsome biochemical and physiological dividends.  相似文献   
22.
Primary open angle glaucoma (POAG) is a leading cause of blindness worldwide. The molecular signaling involved in the pathogenesis of POAG remains unknown. Here, we report that mice lacking the α1 subunit of the nitric oxide receptor soluble guanylate cyclase represent a novel and translatable animal model of POAG, characterized by thinning of the retinal nerve fiber layer and loss of optic nerve axons in the context of an open iridocorneal angle. The optic neuropathy associated with soluble guanylate cyclase α1–deficiency was accompanied by modestly increased intraocular pressure and retinal vascular dysfunction. Moreover, data from a candidate gene association study suggests that a variant in the locus containing the genes encoding for the α1 and β1 subunits of soluble guanylate cyclase is associated with POAG in patients presenting with initial paracentral vision loss, a disease subtype thought to be associated with vascular dysregulation. These findings provide new insights into the pathogenesis and genetics of POAG and suggest new therapeutic strategies for POAG.  相似文献   
23.
Human cytosolic aspartyl‐tRNA synthetase (DRS) catalyzes the attachment of the amino acid aspartic acid to its cognate tRNA and it is a component of the multi‐tRNA synthetase complex (MSC) which has been known to be involved in unexpected signaling pathways. Here, we report the crystal structure of DRS at a resolution of 2.25 Å. DRS is a homodimer with a dimer interface of 3750.5 Å2 which comprises 16.6% of the monomeric surface area. Our structure reveals the C‐terminal end of the N‐helix which is considered as a unique addition in DRS, and its conformation further supports the switching model of the N‐helix for the transfer of tRNAAsp to elongation factor 1α. From our analyses of the crystal structure and post‐translational modification of DRS, we suggest that the phosphorylation of Ser146 provokes the separation of DRS from the MSC and provides the binding site for an interaction partner with unforeseen functions.Proteins 2013; 81:1840–1846. © 2013 Wiley Periodicals, Inc.  相似文献   
24.
25.

Background

The association between sarcopenia and cardiovascular disease (CVD) in elderly people has not been adequately assessed. The aim of this study was to investigate whether CVD is more prevalent in subjects with sarcopenia independent of other well-established cardiovascular risk factors in older Korean adults.

Method

This study utilized the representative Korean population data from the Korea National Health and Nutrition Examination Survey (KNHANES) which was conducted in 2009. Subjects older than 65 years of age with appendicular skeletal muscle mass (ASM) determined by dual energy X-ray absorptiometry were selected. The prevalence of sarcopenia in the older Korean adults was investigated, and it was determined whether sarcopenia is associated with CVD independent of other well-known risk factors.

Results

1,578 subjects aged 65 years and older with the data for ASM were selected, and the overall prevalence of sarcopenia was 30.3% in men and 29.3% in women. Most of the risk factors for CVD such as age, waist circumference, body mass index, fasting plasma glucose and total cholesterol showed significant negative correlations with the ratio between appendicular skeletal muscle mass and body weight. Multiple logistic regression analysis demonstrated that sarcopenia was associated with CVD independent of other well-documented risk factors, renal function and medications (OR, 1.768; 95% CI, 1.075–2.909, P = 0.025).

Conclusions

Sarcopenia was associated with the presence of CVD independent of other cardiovascular risk factors after adjusting renal function and medications.  相似文献   
26.
27.
Molecular and Cellular Biochemistry - Electron transfer occurs through heme-Fe across the cytochrome c protein. The current models of long range electron transfer pathways in proteins include...  相似文献   
28.
Humoral immune response of young chicks to Brucella abortus strain 1119-3 inoculation was monitored to verify the degree of immunosuppression caused by infection with Cryptosporidium baileyi. Young chicks (2-day-old) were orally inoculated each with 2 × 106 oocysts of C. baileyi, and then injected intramuscularly with 0.3 ml B. abortus strain 1119-3 containing 1 × 109 living organisms on day 14 postinoculation (PI). Serum samples were tested by plate agglutination test on day 17 PI onwards at an interval of 3-6 days over a period of 36 days. Infected chicks with the coccidium showed significantly lower antibody titers than those of uninfected controls (P < 0.05). These findings document that C. baileyi infection in early life stage may predispose chicks easily to other potential poultry diseases.  相似文献   
29.
The ABCA1 transporter contains two large domains into which many of the genetic mutations in individuals with Tangier disease fall. To investigate the structural requirements for the cellular cholesterol efflux mediated by ABCA1, we have determined the topology of these two domains and generated transporters harboring five naturally occurring missense mutations in them. These mutants, unlike wild type ABCA1, produced little or no apoA-I-stimulated cholesterol efflux when transfected into 293 cells, establishing their causality in Tangier disease. Because all five mutant proteins were well expressed and detectable on the plasma membrane, their interaction with the ABCA1 ligand, apolipoprotein (apo) A-I, was measured using bifunctional cross-linking agents. Four of five mutants had a marked decline in cross-linking to apoA-I, whereas one (W590S) retained full cross-linking activity. Cross-linking of apoA-I was temperature-dependent, rapid in onset, and detectable with both lipid- and water-soluble cross-linking agents. These results suggest that apoA-I-stimulated cholesterol efflux cannot occur without a direct interaction between the apoprotein and critical residues in two extracellular loops of ABCA1. The behavior of the W590S mutant indicates that although binding of apoA-I by ABCA1 may be necessary, it is not sufficient for stimulation of cholesterol efflux.  相似文献   
30.
Methyl beta-D-fructoside(MF) was formed from sucrose and methanol by a transfructosylation reaction using recombinant levansucrase from Rahnella aquatilis. The increase in the yield of MF formation was achieved by increasing methanol concentration. The enzyme stability at higher concentrations of methanol was maintained by lowering the reaction temperature. The optimum temperature and sucrose concentration for MF formation was 10 degrees C and 50 gL(-1) respectively and the yield of MF was 70%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号