首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   10篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   2篇
  2014年   5篇
  2013年   7篇
  2012年   7篇
  2011年   4篇
  2010年   5篇
  2009年   4篇
  2008年   6篇
  2007年   6篇
  2006年   5篇
  2005年   12篇
  2004年   1篇
  2003年   4篇
  2002年   5篇
  2001年   1篇
  2000年   4篇
  1999年   4篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有111条查询结果,搜索用时 31 毫秒
51.
Potato (Solanum tuberosum L.) plants were transformed with antisense constructs to the genes encoding the -and -subunits of pyrophosphate: fructose-6-phosphate phosphotransferase (PEP), their expression being driven by the constitutive CaMV 35S promotor. (i) In several independent transformant lines, PFP expression was decreased by 70–90% in growing tubers and by 88–99% in stored tubers. (ii) The plants did not show any visual phenotype, reduction of growth or decrease in total tuber yield. However, the tubers contained 20–40% less starch than the wild type. Sucrose levels were slightly increased in growing tubers, but not at other stages. The rates of accumulation of sucrose and free hexoses when tubers were stored at 4° C and the final amount accumulated were the same in antisense and wild-type tubers. (iii) Metabolites were investigated at four different stages in tuber life history; growing (sink) tubers, mature tubers, cold-sweetening tubers and sprouting (source) tubers. At all stages, compared to the wild type, antisense tubers contained slightly more hexose-phosphates, two- to threefold less glycerate-3-phosphate and phosphoenolpyruvate and up to four-to fivefold more fructose-2,6-bisphosphate. (iv) There was no accumulation or depletion of inorganic pyrophosphate (PPi), or of UDP-glucose relative to the hexose-phosphates. (v) The pyruvate content was unaltered or only marginally decreased, and the ATP/ADP ratio did not change. (vi) Labelling experiments on intact tubers did not reveal any significant decrease in the unidirectional rate of metabolism of [U-14C]sucrose to starch, organic acids or amino acids. Stored tubers with an extreme (90%) reduction of PFP showed a 25% decrease in the metabolism of [U14-C] sucrose. (vii) Metabolism (cycling) of [U-14C]glucose to surcrose increased 15-fold in discs from growing antisense tubers, compared with growing wild-type tubers. Resynthesis of sucrose was increased by 10–20% when discs from antisense and wild-type tubers stored at 4° C (cold sweetening) were compared. The conversion of [U-14C]glucose to starch was decreased by about 30% and 50%, respectively. (viii) The randomisation of [1-13C]glucose in the glucosyl and fructosyl moieties of sucrose was decreased from 13.8 and 15.7% in the wild type to 3.6 and 3.9% in an antisense transformant. Simultaneously, randomisation in glucosyl residues isolated from starch was reduced from 14.4 to 4.1%. (ix) These results provide evidence that PFP catalyses a readily reversible reaction in tubers, which is responsible for the recycling of label from triose-phosphates to hexose-phosphates, but with the net reaction in the glycolytic direction. The results do not support the notion that PFP is involved in regulating the cytosolic PPi concentration. They also demonstrate that PFP does not control the rate of glycolysis, and that tubers contain exessive capacity to phosphorylate fructose-6-phosphate. The decreased concentration of phosphoenolpyruvate and glycerate-3-phosphate compensates for the decrease of PFP protein by stimulating ATP-dependent phosphofructokinase, and by stimulating fructose-6-phosphate,2-kinase to increase the fructose-2,6-bisphosphate concentration and activate the residual PFP. The decreased starch accumulation is explained as an indirect effect, caused by the increased rate of resynthesis (cycling) of sucrose in the antisense tubers.Abbreviations Fru1,6bisP fructose-1,6-bisphosphate - Fru2,6bisP fructose-2,6-bisphosphate - Fru6P fructose-6-phosphate - Glc1P glucose-1-phosphate - Glc6P glucose-6-phosphate - NMR nuclear magnetic resonance - 3PGA glycerate-3-phosphate - PEP phosphoenolpyruvate - PEP pyrophosphate: fructose-6-phosphate phosphotransferase - PFK phosphofructokinase - UDPGlc UDP glucose - WT wild type This research was supported by the Bundesministerium for Forschung and Technology (M.S., U.S.), the Canadian Research Council (S.C., D.D.), the Agricultural and Food Research Council (R.V.) and Sandoz Agro Ltd. (M.H., M.S.).  相似文献   
52.
Jailing of a side-branch is a known complication of stent implantation, and makes access to the side-branch difficult, especially if the stent is of the self-expanding type. Although plain balloon angioplasty is feasible for the jailed side-branches, the use of newer devices (a stent, Rotablation or atherectomy) has not been described. We describe a novel way of treating a side-branch jailed by a self-expanding stent by using stent implantation through the strut of a self-expanding stent.  相似文献   
53.
54.

Background

Experimental studies support an important role for endothelial nitric oxide synthase (eNOS) in the regulation of angiogenesis. In humans, a common polymorphism exists in the eNOS gene that results in the conversion of glutamate to aspartate for codon 298. In vitro and in vivo studies have suggested a decreased NOS activity in patients with the Asp298 variant. We hypothesized that a genetic-mediated decreased eNOS activity may limit collateral development in patients with chronic coronary occlusions.

Methods

We selected 291 consecutive patients who underwent coronary angiography and who had at least one chronic (>15 days) total coronary occlusion. Collateral development was graded angiographically using two different methods: the collateral flow grade and the recipient filling grade. Genomic DNA was extracted from white blood cells and genotyping was performed using previously published techniques.

Results

Collateral development was lower in patients carrying the Asp298 variant than in Glu-Glu homozygotes (collateral flow grade: 2.64 ± 0.08 and 2.89 ± 0.08, respectively, p = 0.04; recipient filling grade: 3.00 ± 0.08 and 3.24 ± 0.07, respectively, p = 0.04). By multivariable analysis, three variables were independently associated with the collateral flow grade: female gender, smoking, and the Asp298 variant (p = 0.03) while the Asp298 variant was the sole variable independently associated with the recipient filling grade (p = 0.03).

Conclusion

Collateral development is lower in patients with the Asp298 variant. This may be explained by the decreased NOS activity in patients with the Asp298 variant. Further studies will have to determine whether increasing eNOS activity in humans is associated with coronary collateral development.  相似文献   
55.
Abstract The biochemical pathway and genetics of autotrophic ammonia oxidation have been studied almost exclusively in Nitrosomonas europaea. Terrestrial autotrophic ammonia-oxidizing bacteria (AAOs), however, comprise two distinct phylogenetic groups in the beta-Proteobacteria, the Nitrosomonas and Nitrosospira groups. Hybridization patterns were used to assess the potential of functional probes in non-PCR-based molecular analysis of natural AAO populations and their activity. The objective of this study was to obtain an overview of functional gene homologies by hybridizing probes derived from N. europaea gene sequences ranging in size from 0.45 to 4.5 kb, and labeled with 32P to Southern blots containing genomic DNA from four Nitrosospira representatives. Probes were specific for genes encoding ammonia monooxygenase (amoA and amoB), hydroxylamine oxidoreductase (hao), and cytochrome c-554 (hcy). These probes produced hybridization signals, at low stringency (30 degreesC), with DNA from each of the four representatives; signals at higher stringency (42 degreesC) were greatly reduced or absent. The hybridization signals at low stringency ranged from 20 to 76% of the total signal obtained with N. europaea DNA. These results indicate that all four functional genes in the ammonia oxidation pathway have diverged between the Nitrosomonas and Nitrosospira groups. The hao probe produced the most consistent hybridization intensities among the Nitrosospira representatives, suggesting that hao sequences would provide the best probes for non-PCR-based molecular analysis of terrestrial AAOs. Since N. europaea can also denitrify, an additional objective was to hybridize genomic DNA from AAOs with probes for Pseudomonas genes involved in denitrification. These probes were specific for genes encoding heme-type dissimilatory nitrite reductase (dNir), Cu-type dNir, and nitrous oxide reductase (nosz). No hybridization signals were observed from probes for the heme-type dNir or nosz, but Nitrosospira sp. NpAV and Nitrosolobus sp. 24-C hybridized, under low-stringency conditions, with the Cu-type dNir probe. These results indicate that AAOs may also differ in their mechanisms and capacities for denitrification.  相似文献   
56.
In this study, the light chain (κ) and heavy chain (γ) sequences of the monoclonal antibody against vascular endothelial growth factor (VEGF) were sub-cloned into the eukaryotic pcDNA3.1 (+) (Hygro) and the pcDNA3.1 (+) (Neo) expression vectors using the traditional and homologous recombination methods. To express the antibody, the recombinant plasmids were transfected into the Chinese hamster ovary (CHO) and the K562 cell lines. The recombinant antibody was then purified using the protein A affinity chromatography. Furthermore, in order to demonstrate the inhibition of VEGF-induced mitogenesis of the recombinant antibody, the bovine aorta endothelial like cells were employed. The results showed specialization and conjunction of the recombinant antibody to the VEGF. It was also indicated that the antibody expression in the K562 cell lines was higher than the CHO cell lines. Furthermore, the in vitro VEGF inhabitation of the recombinant antibodies which were produced from the K562 cell line, and the CHO cell line, were similar. This proved that the K562 cell line is a good substitute for the CHO cell line in the production of the recombinant antibodies.  相似文献   
57.
The aim of this work was to investigate the importance of cytosolic phosphorylating glyceraldehyde 3-phosphate dehydrogenase (GAPC) in potato carbohydrate metabolism. For this purpose, the cytosolic isoform of phosphorylating GAPC was cloned and used for an antisense approach to generate transgenic potato plants that exhibited constitutively decreased GAPDH activity. Potato lines with decreased activities of phosphorylating GAPC exhibited no major changes in either whole-plant or tuber morphology. However, the levels of 3-phosphoglycerate were decreased in leaves of the transformants. A broad metabolic phenotyping of tubers from the transformants revealed an increase in sucrose and UDPglucose content, a decrease in the glycolytic intermediates 3-phosphoglycerate and phosphoenolpyruvate but little change in the levels of other metabolites. Moreover, the transformants displayed no differences in cold sweetening with respect to the wild type. Taken together these data suggest that phosphorylating GAPC plays only a minor role in the regulation of potato metabolism. The results presented here are discussed in relation to current models regarding primary metabolism in the potato tuber parenchyma.  相似文献   
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号