首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2250篇
  免费   100篇
  2023年   5篇
  2022年   7篇
  2021年   18篇
  2020年   9篇
  2019年   28篇
  2018年   32篇
  2017年   33篇
  2016年   30篇
  2015年   55篇
  2014年   72篇
  2013年   254篇
  2012年   112篇
  2011年   104篇
  2010年   67篇
  2009年   68篇
  2008年   128篇
  2007年   154篇
  2006年   148篇
  2005年   141篇
  2004年   156篇
  2003年   147篇
  2002年   139篇
  2001年   31篇
  2000年   27篇
  1999年   35篇
  1998年   38篇
  1997年   31篇
  1996年   21篇
  1995年   22篇
  1994年   18篇
  1993年   21篇
  1992年   19篇
  1991年   15篇
  1990年   12篇
  1989年   15篇
  1988年   10篇
  1987年   9篇
  1985年   7篇
  1984年   13篇
  1983年   9篇
  1982年   10篇
  1981年   5篇
  1980年   12篇
  1979年   5篇
  1977年   6篇
  1976年   5篇
  1975年   9篇
  1969年   4篇
  1967年   6篇
  1950年   4篇
排序方式: 共有2350条查询结果,搜索用时 31 毫秒
51.
Two novel glycosides, 4,5-dimethoxy-3-hydroxyphenol 1-O-β-(6′-O-galloyl)-glucopyranoside (1) and (+)-2α-O-galloyl lyoniresinol 3α-O-β-d-xylopyranoside (2), as well as a novel ellagitannin named epiquisqualin B (3), were isolated from sapwood of Quercus mongolica var. crispula along with 19 known phenolic compounds. The structures of the novel compounds were elucidated on the basis of chemical and spectroscopic investigation. Compound 2 is the first example of a lignan galloyl ester, and 3 is the oxidation product of vescalagin, which is the major ellagitannin of this plant.  相似文献   
52.
NAFLD is an important public health issue closely associated with the pervasive epidemics of diabetes and obesity. Yet, despite NAFLD being among the most common of chronic liver diseases, the biological factors responsible for its transition from benign nonalcoholic fatty liver (NAFL) to NASH remain unclear. This lack of knowledge leads to a decreased ability to find relevant animal models, predict disease progression, or develop clinical treatments. In the current study, we used multiple mouse models of NAFLD, human correlation data, and selective gene overexpression of steroidogenic acute regulatory protein (StarD1) in mice to elucidate a plausible mechanistic pathway for promoting the transition from NAFL to NASH. We show that oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the “acidic/alternative” pathway of cholesterol metabolism. Specifically, we report data showing that an inability to upregulate CYP7B1, in the setting of insulin resistance, results in the accumulation of toxic intracellular cholesterol metabolites that promote inflammation and hepatocyte injury. This metabolic pathway, initiated and exacerbated by insulin resistance, offers insight into approaches for the treatment of NAFLD.  相似文献   
53.
Floral chemical components are important cues used by plants to attract pollinators. One outstanding case is “fruit fly orchids” in the genus of Bulbophyllum to attract their pollinators by releasing characteristic fragrances. Dacini fruit flies are main or exclusive pollinators which are strongly attracted to certain natural chemicals, either methyl eugenol (ME: a phenylpropanoid) or raspberry ketone (RK: a phenylbutanoid). Furthermore, zingerone (ZN: a phenylbutanoid) has been characterized as the attractant for both ME- and RK-sensitive fruit fly species. In the present study, we examined chemical profiles of two closely related Bulbophyllum orchids—B. hortorum, and B. macranthoides subsp. tollenoniferum—distributed in Papua New Guinea and the Southeast Asian countries, respectively. We first observed that RK-sensitive flies were attracted to these orchids by ex situ cultivation in Penang, Malaysia. These Bulbophyllum orchids contained RK and/or ZN as their main floral components. Other than these attractants, multiple phenylbutanoids including potential attractants for RK-sensitive species were identified from these orchids. Therefore, we examined attractiveness of potential phenylbutanoid attractants to an RK-sensitive melon fly, Zeugodacus cucurbitae, using laboratory-reared flies. Furthermore, we analyzed molecular phylogenetic relationships among phenylpropanoid- or phenylbutanoid-producing orchids to see a relation between chemical profiles and phylogenetic classification in the related species.  相似文献   
54.
55.
Morbillivirus infection is a severe threat to marine mammals. Mass die‐offs caused by this infection have repeatedly occurred in bottlenose dolphins (Turiops truncatus) and striped dolphins (Stenella coeruleoalba), both of which belong to the family Delphinidae, but not in other cetaceans. However, it is unknown whether sensitivity to the virus varies among cetacean species. The signaling lymphocyte activation molecule (SLAM) is a receptor on host cells that allows morbillivirus invasion and propagation. Its immunoguloblin variable domain‐like (V) region provides an interface for the virus hemagglutinin (H) protein. In this study, variations in the amino acid residues of the V region of 26 cetacean species, covering almost all cetacean genera, were examined. Three‐dimensional (3D) models of them were generated in a homology model using the crystal structure of the marmoset SLAM and measles virus H protein complex as a template. The 3D models showed 32 amino acid residues on the interface that possibly bind the morbillivirus. Among the cetacean species studied, variations were found at six of the residues. Bottlenose and striped dolphins have substitutions at five positions (E68G, I74V, R90H, V126I, and Q130H) compared with those of baleen whales. Three residues (at positions 68, 90 and 130) were found to alternate electric charges, possibly causing changes in affinity for the virus. This study shows a new approach based on receptor structure for assessing potential vulnerability to viral infection. This method may be useful for assessing the risk of morbillivirus infection in wildlife.  相似文献   
56.
Abstract

Molecular dynamics simulations of the protein C γ-carboxyglutamic acid (Gla) domain and endothelial cell protein C receptor (EPCR) complex were performed to determine the effect of a hereditary disease, which results in a mutation (Gla 25 → Lys) in the protein C Gla domain. Our results suggest that the Gla 25 → Lys mutation causes a significant reduction in the binding force between protein C Gla domain and EPCR due to destabilization of the helix structure of EPCR and displacement of a Ca2+ ion.  相似文献   
57.
Invasive ductal adenocarcinoma (IDA) of the pancreas manifests poor prognosis due to the early invasion and distant metastasis. In contrast, intraductal papillary mucinous adenoma or carcinoma (IPMA or IPMC) reveals better clinical outcomes. Various molecular mechanisms contribute to these differences but entire picture is still unclear. Recent researches emphasized the important role of miRNA in biological processes including cancer invasion and metastasis. We previously described that miR‐126 is down‐regulated in IDA compared with IPMA or IPMC, and miR‐126 regulates the expression of invasion related molecule disintegrin and metalloproteinase domain‐containing protein 9 (ADAM9). Assessing the difference of miRNA expression profiles of IDA, IPMA, and IPMC, we newly identified miR‐197 as an up‐regulated miRNA specifically in IDA. Expression of miR‐197 in pancreatic cancer cells resulted in the induction of epithelial–mesenchymal transition (EMT) along with the down‐regulation of p120 catenin which is a putative target of miR‐197. Direct interaction between miR‐197 and p120 catenin mRNA sequence was confirmed by 3′UTR assay, and knockdown of p120 catenin recapitulated EMT induction in pancreatic cancer cells. In situ hybridization of miR‐197 and immunohistochemistry of p120 catenin showed mutually exclusive patterns suggesting pivotal role of miR‐197 in the regulation of p120 catenin. This miR‐197/p120 catenin axis could be a novel therapeutic target. J. Cell. Physiol. 228: 1255–1263, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
58.
Heme oxygenase catalyzes the degradation of heme to biliverdin, iron, and carbon monoxide. Here, we present crystal structures of the substrate-free, Fe3+-biliverdin-bound, and biliverdin-bound forms of HmuO, a heme oxygenase from Corynebacterium diphtheriae, refined to 1.80, 1.90, and 1.85 Å resolution, respectively. In the substrate-free structure, the proximal and distal helices, which tightly bracket the substrate heme in the substrate-bound heme complex, move apart, and the proximal helix is partially unwound. These features are supported by the molecular dynamic simulations. The structure implies that the heme binding fixes the enzyme active site structure, including the water hydrogen bond network critical for heme degradation. The biliverdin groups assume the helical conformation and are located in the heme pocket in the crystal structures of the Fe3+-biliverdin-bound and the biliverdin-bound HmuO, prepared by in situ heme oxygenase reaction from the heme complex crystals. The proximal His serves as the Fe3+-biliverdin axial ligand in the former complex and forms a hydrogen bond through a bridging water molecule with the biliverdin pyrrole nitrogen atoms in the latter complex. In both structures, salt bridges between one of the biliverdin propionate groups and the Arg and Lys residues further stabilize biliverdin at the HmuO heme pocket. Additionally, the crystal structure of a mixture of two intermediates between the Fe3+-biliverdin and biliverdin complexes has been determined at 1.70 Å resolution, implying a possible route for iron exit.  相似文献   
59.
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd12), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient‐sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi‐starved mgd1‐2 leaves, biogenesis of thylakoid‐like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress‐induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light‐harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1‐2 mutant. Moreover, the reduced expression of nuclear‐ and plastid‐encoded photosynthetic genes observed in the mgd1‐2 mutant under Pi‐sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid‐ and nuclear‐encoded photosynthetic genes, independently of photosynthesis.  相似文献   
60.
Carcinogenesis is believed to be induced through the oxidative damage of DNA, and antioxidants are expected to suppress it. So, the polyphenolic antioxidants in daily foods were investigated to see whether they protect against genetic damage by active oxygen. In the evaluation, we used a bioassay and a chemical determination, a Salmonella mutagenicity test for mutation by a N-hydroxyl radical from one of the dietary carcinogens 3-amino-1-methyl-5H-pyrido[4,3-b]indole and the formation of 8-hydroxyl (8-OHdG) from 2′-deoxyguanosine (2′-dG) in a Fenton OH-radical generating system. Thirty-one antioxidants including flavonoids were compared in terms of radical-trapping activity with bacterial DNA and 2′-dG. Antioxidants inhibited the mutation but the IC50 values were in the mM order. Against 8-OHdG formation, only α-tocopherol had a suppressive effect with an IC50 of 1.5 μM. Thus, except α-tocopherol, the dietary antioxidants did not scavenge the biological radicals faster than bacterial DNA and intact 2′-dG, indicating that they failed to prevent oxidative gene damage and probably carcinogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号