首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   9篇
  国内免费   6篇
  2023年   6篇
  2022年   4篇
  2021年   4篇
  2020年   4篇
  2019年   10篇
  2018年   13篇
  2017年   8篇
  2016年   9篇
  2015年   11篇
  2014年   13篇
  2013年   31篇
  2012年   14篇
  2011年   23篇
  2010年   9篇
  2009年   9篇
  2008年   4篇
  2007年   7篇
  2006年   5篇
  2005年   8篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   5篇
  2000年   5篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有237条查询结果,搜索用时 62 毫秒
91.
Mitochondrial DNA D-loop (control) region (426-bp) was used to infer the genetic structure of Spanish mackerel (Scomberomorus commerson) from populations in Southeast Asia (Brunei, East and West Malaysia, Philippines, Thailand, Singapore, and China) and northern Australia (including western Timor). An east–west division along Wallace’s Line was strongly supported by a significant AMOVA, with 43% of the total sequence variation partitioned among groups of populations. Phylogenetic and network analyses supported two clades: clade A and clade B. Members of clade A were found in Southeast Asia and northern Australia, but not in locations to the west (Gulf of Thailand) or north (China). Clade B was found exclusively in Southeast Asia. Genetic division along Wallace’s Line suggests that co-management of S. commerson populations for future sustainability may not be necessary between Southeast Asian nations and Australia, however all countries should share the task of management of the species in Southeast Asia equally. More detailed genetic studies of S. commerson populations in the region are warranted.  相似文献   
92.

Introduction

Treatment of chondral injuries remains a major issue despite the many advances made in cartilage repair techniques. Although it has been postulated that the use of marrow stimulation in combination with cell-based therapy may provide superior outcome, this has yet to be demonstrated. A pilot study was thus conducted to determine if bone marrow derived mesenchymal stromal cells (BM-MSCs) have modulatory effects on the repair outcomes of bone marrow stimulation (BMS) techniques.

Methods

Two full-thickness chondral 5 mm diameter defects were created in tandem on the medial condyle of left stifle joints of 18 Boer caprine (N = 18). Goats were then divided equally into three groups. Simultaneously, bone marrow aspirates were taken from the iliac crests from the goats in Group 1 and were sent for BM-MSC isolation and expansion in vitro. Six weeks later, BMS surgery, which involves subchondral drilling at the defect sites, was performed. After two weeks, the knees in Group 1 were given autologous intra-articular BM-MSCs (N = 6). In Group 2, although BMS was performed there were no supplementations provided. In Group 3, no intervention was administered. The caprines were sacrificed after six months. Repairs were evaluated using macroscopic assessment through the International Cartilage Repair Society (ICRS) scoring, histologic grading by O’Driscoll score, biochemical assays for glycosaminoglycans (GAGs) and gene expressions for aggrecan, collagen II and Sox9.

Results

Histological and immunohistochemical analyses demonstrated hyaline-like cartilage regeneration in the transplanted sites particularly in Group 1. In contrast, tissues in Groups 2 and 3 demonstrated mainly fibrocartilage. The highest ICRS and O’Driscoll scorings was also observed in Group 1, while the lowest score was seen in Group 3. Similarly, the total GAG/total protein as well as chondrogenic gene levels were expressed in the same order, that is highest in Group 1 while the lowest in Group three. Significant differences between these 3 groups were observed (P <0.05).

Conclusions

This study suggests that supplementing intra-articular injections of BM-MSCs following BMS knee surgery provides superior cartilage repair outcomes.  相似文献   
93.
Whole-exome or gene targeted resequencing in hundreds to thousands of individuals has shown that the majority of genetic variants are at low frequency in human populations. Rare variants are enriched for functional mutations and are expected to explain an important fraction of the genetic etiology of human disease, therefore having a potential medical interest. In this work, we analyze the whole-exome sequences of French-Canadian individuals, a founder population with a unique demographic history that includes an original population bottleneck less than 20 generations ago, followed by a demographic explosion, and the whole exomes of French individuals sampled from France. We show that in less than 20 generations of genetic isolation from the French population, the genetic pool of French-Canadians shows reduced levels of diversity, higher homozygosity, and an excess of rare variants with low variant sharing with Europeans. Furthermore, the French-Canadian population contains a larger proportion of putatively damaging functional variants, which could partially explain the increased incidence of genetic disease in the province. Our results highlight the impact of population demography on genetic fitness and the contribution of rare variants to the human genetic variation landscape, emphasizing the need for deep cataloguing of genetic variants by resequencing worldwide human populations in order to truly assess disease risk.  相似文献   
94.
Characeae, a family of calcifying green algae, are common in carbonate-rich freshwaters. The southwestern shoreline of Lake Ganau (Kurdistan Region, northeastern Iraq) harbors dense and thick mats of these algae (genus Chara). On the lake bottom and along the shore, carbonate sands and rocks rich in the remains of stems, branches, nodes, and whorls of Chara are deposited. These deposits show all stages of growth and degradation of characean algae, including replacement and lithification into limestone. The replacement of the fragments by fine-grained calcite preserved delicate microstructures of Chara, such as cortical walls, cell shape, inner and outer layers of the stems, and reproductive organs. Based on roundness, sorting, the degree of lithification, and preserved microstructures of the grains (fragments), three facies were recognized. The first is represented by a newly formed lime sand facies showing elongated grains, poor sorting, and reduced roundness, with pristine preservation of characean surface microstructures. The second is a weathered lime sand facies, which shows better sorting and good roundness, whereas internal structures of characean fragments are still well preserved. The third is comprised of a lithified lime sand facies (grainstone), with very well sorted and rounded grains, and poorly preserved external and internal structures of the characeans. As compared to the newly formed lime sand facies, the grainstone facies shows an increase in grain size by more than 30 %, owing to precipitation of micritic lamina of possible microbial origin. Eventually, the Characeae-derived lime sands are lithified into oolitic limestones with sparry calcite cement, forming a grainstone microfacies. The present study has important implications for the interpretation of pre-Quaternary environments, as it records all stages of the fossilization process of characean green algae and highlights the role of these algae in the formation of oolitic carbonate rocks.  相似文献   
95.
Human embryonic stem cells (hESc) are known for its pluripotency and self renewal capability, thus possess great potential in regenerative medicine. However, the lack of suitable xenofree extracellular matrix substrate inhibits further applications or the use of hESc in cell-based therapy. In this study, we described a new differentiation method, which generates a homogeneous population of mesenchymal progenitor cells (hESc–MPC) from hESc via epithelial–mesenchymal transition. The extracellular matrix (ECM) proteins from hESc–MPC had in turn supported the undifferentiated expansion of hESc. Immunocytochemistry and flow cytometry characterization of hESc–MPC revealed the presence of early mesenchymal markers. Tandem mass spectometry analysis of ECM produced by hESc–MPC revealed the presence of a mixture of extracellular proteins which includes tenascin C, fibronectin, and vitronectin. The pluripotency of hESc (MEL-1) cultured on the ECM was maintained as shown by the expression of pluripotent genes (FoxD3, Oct-4, Tdgf1, Sox-2, Nanog, hTERT, Rex1), protein markers (SSEA-3, SSEA-4, TRA-1-81, TRA-1-60, Oct-4) and the ability to differentiate into cells representative of ectoderm, endoderm and mesoderm. In summary, we have established a xeno-free autogenic feeder free system to support undifferentiated expansion of hESc, which could be of clinical relevance.  相似文献   
96.
The West Asian stripe-necked terrapin Mauremys caspica is widespread throughout the Middle East—a region for which only few phylogeographic studies are available. Due to landscape alteration, pollution and intensification of water management, M. caspica is increasingly threatened. However, genetic diversity among and within populations is poorly known, impeding the identification of management units. Using a nearly rangewide sampling, we analyzed 14 microsatellite loci and mtDNA sequences in order to gain insight into the population structure and history of M. caspica. In agreement with a previous study, we found two clusters of mitochondrial haplotypes, with one cluster distributed in the east and the other in the west of the range. However, our microsatellite data suggested a more pronounced geographical structuring. When null alleles were coded as recessive with structure 2.3.2, three clusters were revealed, with one cluster matching roughly the range of the western mitochondrial cluster, and the composite ranges of the two other microsatellite clusters correspond to the distribution of the eastern mitochondrial cluster. Naïve structure analyses without correction for null alleles were congruent with respect to the two eastern microsatellite clusters, but subdivided the western cluster into two units, with an additional geographical divide corresponding to the ‘Anatolian diagonal’—a well-known high mountain barrier impeding exchange between western and eastern taxa. In naïve analyses, the westernmost microsatellite cluster (from Central Anatolia) is quite isolated from the others, and its distinctness is also supported by fixation indices resembling the values among the other three clusters. One of the two eastern clusters is distributed in the Caucasus region plus Iran, and terrapins from Saudi Arabia and Bahrain constitute the second eastern cluster, supporting the view that these endangered populations are native. Coalescent-based analyses of our microsatellite data reveal for all four clusters bottlenecks 4,000–20,000 years ago, suggesting that climatic fluctuations of the Late Pleistocene and Holocene played an important role in shaping current genetic diversity. We propose that each of the four identified clusters, including the Central Anatolian one, should be treated as a distinct management unit. The presence of non-native terrapins in the animal trade of Bahrain highlights the danger of genetic pollution of the endangered Arabian populations. Further sampling is needed to elucidate the situation in southern and central Iran and Iraq. Our results confirm that genetic data do not support the validity of any of the three morphologically defined subspecies of M. caspica, and we propose that their usage be abandoned.  相似文献   
97.
A chemometric-assisted kinetic spectrophotometric method has been developed for simultaneous determination of ascorbic acid (AA), uric acid (UA), and dopamine (DA). This method relies on the difference in the kinetic rates of the reactions of analytes with a common oxidizing agent, tris(1,10-phenanthroline) and iron(III) complex (ferritin, [Fe(phen)3]3+) at pH 4.4. The changes in absorbance were monitored spectrophotometrically. The data obtained from the experiments were processed by chemometric methods of artificial neural network (ANN) and partial least squares (PLS). Acceptable techniques of prediction set, randomization t test, cross-validation, and Y randomization were applied for the selection of the best chemometric method. The results showed that feedforward artificial neural network (FFANN) is more efficient than the other chemometric methods. The parameters affecting the experimental conditions were optimized, and it was found that under optimal conditions Beer’s law is followed in the concentration ranges of 4.3–74.1, 4.3–78.3, and 2.0–33.0 μM for AA, UA, and DA, respectively. The proposed method was successfully applied to the determination of analytes in serum and urine samples.  相似文献   
98.
99.
Two bombsin peptides, GRPR agonist [Aca-QWAVGHLM-NH2] and antagonist [fQWAVGHL-NHEthyl] were evaluated. We employed the highly sensitive Waters Q-Tof Premier MS coupled with a UPLC system to identify the metabolites produced by rat hepatocytes or PC-3 human prostate cancer cells; and we utilized the AB/MDS 4000 Q-Trap LC/MS/MS system with highly sensitive quantitative and qualitative performance, to quantitatively analyze the internalization of GRPR agonist and antagonist in PC-3 cells. The major metabolites of both GRPR agonist and antagonist were the result of peptide bond hydrolysis between W and A which was demonstrated by observation of the N-terminal fragment m/z 446 (Aca-QW-OH) for agonist and m/z 480 (fQW-OH) for antagonist. Both peptides were also hydrolyzed between A and V which formed peaks m/z 517 [Aca-QWA-OH] and m/z 555 (VGHLM-NH2) for the agonist and m/z 551 [fQWA-OH] and m/z 452 (VGHL-NHEthyl) for the antagonist. The peptide agonist also formed a unique metabolite that resulted from hydrolysis of the C-terminal amide. The antagonist showed significantly slower metabolism as compared to the agonist in both rat hepatocytes and PC-3 cells. The antagonist also showed significantly lower PC-3 cell internalization rate than that of the agonist. In conclusion, the metabolism profiles of both GRPR agonist and antagonist peptides were identified by LC/MS. The antagonist peptide was more stable than the agonist peptide in rat hepatocyte incubation. One major factor could be the hydrolysis-resistant C-terminal L-NHEthyl group compared with the unsubstituted amide of the agonist. Another factor could be different amino acid sequences of the agonist and antagonist that may also influence the enzymatic hydrolysis. The antagonist ligand is potentially more useful for receptor-targeted imaging due primarily to its higher metabolic stability.  相似文献   
100.
Benzothiophene carboxamide derivatives of aminobenzophenone, aminopyridine, aminobenzimidazole, and aniline derivatives (compounds 1-9) were synthesized and compounds 3, 6, 7, 8, and 9 tested in vivo for their hypolipidemic activity. Compounds 1-8 were prepared adopting the fusion process at 130-150 degrees C between benzothiophene-2-carbonyl chloride and aminobenzophenones, aminopyridine, and anilines, respectively, and were obtained in high yield, while compound 9 was obtained from the reaction of benzothiophene acyl chloride with aminobenzimidazole in DMF at 160 degrees C. At a dose of 15 mg/kg body weight compounds 6, 7, and 9 significantly reduced plasma triglyceride levels in Triton WR-1339-induced hyperlipidemic rats in comparison to control rats. Furthermore, they significantly increased high-density lipoprotein levels. It is therefore reasonable to assume that compounds 6, 7, and 9 may have a promising potential in the treatment of hyperlipidemia and atherosclerosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号