首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8294篇
  免费   603篇
  国内免费   810篇
  2024年   19篇
  2023年   105篇
  2022年   248篇
  2021年   477篇
  2020年   337篇
  2019年   388篇
  2018年   355篇
  2017年   284篇
  2016年   395篇
  2015年   560篇
  2014年   646篇
  2013年   680篇
  2012年   836篇
  2011年   691篇
  2010年   405篇
  2009年   401篇
  2008年   420篇
  2007年   355篇
  2006年   319篇
  2005年   259篇
  2004年   216篇
  2003年   189篇
  2002年   167篇
  2001年   154篇
  2000年   120篇
  1999年   111篇
  1998年   76篇
  1997年   81篇
  1996年   78篇
  1995年   55篇
  1994年   50篇
  1993年   32篇
  1992年   42篇
  1991年   20篇
  1990年   26篇
  1989年   19篇
  1988年   16篇
  1987年   16篇
  1986年   12篇
  1985年   18篇
  1984年   9篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1966年   1篇
  1965年   2篇
排序方式: 共有9707条查询结果,搜索用时 20 毫秒
101.
Wu  Hao  Cui  Yuanting  He  Chengkang  Gao  Peng  Li  Qiang  Zhang  Hexuan  Jiang  Yanli  Hu  Yingru  Wei  Xiao  Lu  Zongshi  Ma  Tianyi  Liu  Daoyan  Zhu  Zhiming 《中国科学:生命科学英文版》2020,63(11):1665-1677
Science China Life Sciences - High salt intake is a known risk factor of cardiovascular diseases. Our recent study demonstrated that long-term high salt intake impairs transient receptor potential...  相似文献   
102.
103.
Previous studies have reported the ability of fungi to overwinter in soil or on crop debris under different environmental conditions, but how fungi adapt to chilling is still largely unknown. In this study, we have identified and characterized the RNA binding protein (RBP) (VdNop12) by screening an Agrobacterium tumefaciens-mediated transformation-mediated insertional mutational library of Verticillium dahliae. We determined that this protein was essential to the pathogen for virulence on cotton plants. VdNop12 contains two tandem RNA recognition motif domains, and its orthologs are widely distributed in filamentous fungi. Mutants produced by disruption of VdNop12 showed defects in vegetative growth, conidiation and cell wall integrity. The mutant also showed an increase in sensitivity to low temperature, as compared to the wildtype and complementation strains. Yeast complementation assay showed that VdNop12 could functionally restore the growth phenotype of ΔScNop12 mutant of Saccharomyces cerevisiae at 15°C. We demonstrated that the VdNop12 is localized in the nucleus, and its loss resulted in the downregulated expression of several genes related to cAMP-PKA and MAPK pathways in V. dahliae. Our results demonstrated a crucial role of RBPs in the regulation of morphology, cold adaption, and pathogenic development in V. dahliae.  相似文献   
104.
Vibrio cholerae can enter a viable but non-culturable (VBNC) state when it encounters unfavourable environments; VBNC cells serve as important reservoirs and still pose threats to public health. The genetic regulation of V. cholerae entering its VBNC state is not well understood. Here, we show a confrontation strategy adapted by V. cholerae O1 in which it utilizes a quorum sensing (QS) system to prevent transition into a VBNC state under low nutrition and temperature conditions. The upregulation of hapR resulted in a prolonged culturable state of V. cholerae in artificial sea water at 4°C, whereas the mutation of hapR led to fast entry into the VBNC state. We also observed that different V. cholerae O1 natural isolates with distinct QS functions present a variety of abilities to maintain culturability during the transition to a VBNC state. The strain groups with higher or constitutive expression of QS genes exhibit a greater tendency to maintain the culturable state during VBNC induction than those lacking QS functional groups. In summary, HapR-mediated QS regulation is associated with the transition to the VBNC state in V. cholerae. HapR expression causes V. cholerae to resist VBNC induction and become dominant over competitors in changing environments.  相似文献   
105.
The jasmonic acid (JA) pathway plays crucial roles in plant defence against pathogens and herbivores. Rice stripe virus (RSV) is the type member of the genus Tenuivirus. It is transmitted by the small brown planthopper (SBPH) and causes damaging epidemics in East Asia. The role(s) that JA may play in the tripartite interaction against RSV, its host, and vector are poorly understood. Here, we found that the JA pathway was induced by RSV infection and played a defence role against RSV. The coat protein (CP) was the major viral component responsible for inducing the JA pathway. Methyl jasmonate treatment attracted SBPHs to feed on rice plants while a JA-deficient mutant was less attractive than wild-type rice. SBPHs showed an obvious preference for feeding on transgenic rice lines expressing RSV CP. Our results demonstrate that CP is an inducer of the JA pathway that activates plant defence against RSV while also attracting SBPHs to feed and benefitting viral transmission. This is the first report of the function of JA in the tripartite interaction between RSV, its host, and its vector.  相似文献   
106.
The biotrophic fungal pathogen Ustilaginoidea virens causes rice false smut, a newly emerging plant disease that has become epidemic worldwide in recent years. The U. virens genome encodes many putative effector proteins that, based on the study of other pathosystems, could play an essential role in fungal virulence. However, few studies have been reported on virulence functions of individual U. virens effectors. Here, we report our identification and characterization of the secreted cysteine-rich protein SCRE1, which is an essential virulence effector in U. virens. When SCRE1 was heterologously expressed in Magnaporthe oryzae, the protein was secreted and translocated into plant cells during infection. SCRE1 suppresses the immunity-associated hypersensitive response in the nonhost plant Nicotiana benthamiana. Induced expression of SCRE1 in rice also inhibits pattern-triggered immunity and enhances disease susceptibility to rice bacterial and fungal pathogens. The immunosuppressive activity is localized to a small peptide region that contains an important ‘cysteine-proline-alanine-arginine-serine’ motif. Furthermore, the scre1 knockout mutant generated using the CRISPR/Cas9 system is attenuated in U. virens virulence to rice, which is greatly complemented by the full-length SCRE1 gene. Collectively, this study indicates that the effector SCRE1 is able to inhibit host immunity and is required for full virulence of U. virens.  相似文献   
107.
108.
Hutchinson–Gilford progeria syndrome (HGPS) is caused by the accumulation of mutant prelamin A (progerin) in the nuclear lamina, resulting in increased nuclear stiffness and abnormal nuclear architecture. Nuclear mechanics are tightly coupled to cytoskeletal mechanics via lamin A/C. However, the role of cytoskeletal/nuclear mechanical properties in mediating cellular senescence and the relationship between cytoskeletal stiffness, nuclear abnormalities, and senescent phenotypes remain largely unknown. Here, using muscle‐derived mesenchymal stromal/stem cells (MSCs) from the Zmpste24?/? (Z24?/?) mouse (a model for HGPS) and human HGPS fibroblasts, we investigated the mechanical mechanism of progerin‐induced cellular senescence, involving the role and interaction of mechanical sensors RhoA and Sun1/2 in regulating F‐actin cytoskeleton stiffness, nuclear blebbing, micronuclei formation, and the innate immune response. We observed that increased cytoskeletal stiffness and RhoA activation in progeria cells were directly coupled with increased nuclear blebbing, Sun2 expression, and micronuclei‐induced cGAS‐Sting activation, part of the innate immune response. Expression of constitutively active RhoA promoted, while the inhibition of RhoA/ROCK reduced cytoskeletal stiffness, Sun2 expression, the innate immune response, and cellular senescence. Silencing of Sun2 expression by siRNA also repressed RhoA activation, cytoskeletal stiffness and cellular senescence. Treatment of Zmpste24?/? mice with a RhoA inhibitor repressed cellular senescence and improved muscle regeneration. These results reveal novel mechanical roles and correlation of cytoskeletal/nuclear stiffness, RhoA, Sun2, and the innate immune response in promoting aging and cellular senescence in HGPS progeria.  相似文献   
109.
Alzheimer's disease (AD) and cancer have inverse relationship in many aspects. Some tumor suppressors, including miR‐34c, are decreased in cancer but increased in AD. The upstream regulatory pathways and the downstream mechanisms of miR‐34c in AD remain to be investigated. The expression of miR‐34c was detected by RT–qPCR in oxidative stressed neurons, hippocampus of SAMP8 mice, or serum of patients with amnestic mild cognitive impairment (aMCI). Dual luciferase assay was performed to confirm the binding sites of miR‐34c in its target mRNA. The Morris water maze (MWM) was used to evaluate learning and memory in SAMP8 mice administrated with miR‐34c antagomir (AM34c). Golgi staining was used to evaluate the synaptic function and structure. The dramatically increased miR‐34c was mediated by ROS‐JNK‐p53 pathway and negatively regulated synaptotagmin 1 (SYT1) expression by targeting the 3′‐untranslated region (3′‐UTR) of syt1 in AD. The expression of SYT1 protein was reduced by over expression of miR‐34c in the HT‐22 cells and vice versa. Administration of AM34c by the third ventricle injection or intranasal delivery markedly increased the brain levels of SYT1 and ameliorated the cognitive function in SAMP8 mice. The serum miR‐34c was significantly increased in patients with aMCI and might be a predictive biomarker for diagnosis of aMCI. These results indicated that increased miR‐34c mediated synaptic and memory deficits by targeting SYT1 through ROS‐JNK‐p53 pathway and the miR‐34c/SYT1 pathway could be considered as a promising novel therapeutic target for patients with AD.  相似文献   
110.
Caveolae position CaV3.2 (T‐type Ca2+ channel encoded by the α‐3.2 subunit) sufficiently close to RyR (ryanodine receptors) for extracellular Ca2+ influx to trigger Ca2+ sparks and large‐conductance Ca2+‐activated K+ channel feedback in vascular smooth muscle. We hypothesize that this mechanism of Ca2+ spark generation is affected by age. Using smooth muscle cells (VSMCs) from mouse mesenteric arteries, we found that both Cav3.2 channel inhibition by Ni2+ (50 µM) and caveolae disruption by methyl‐ß‐cyclodextrin or genetic abolition of Eps15 homology domain‐containing protein (EHD2) inhibited Ca2+ sparks in cells from young (4 months) but not old (12 months) mice. In accordance, expression of Cav3.2 channel was higher in mesenteric arteries from young than old mice. Similar effects were observed for caveolae density. Using SMAKO Cav1.2?/? mice, caffeine (RyR activator) and thapsigargin (Ca2+ transport ATPase inhibitor), we found that sufficient SR Ca2+ load is a prerequisite for the CaV3.2‐RyR axis to generate Ca2+ sparks. We identified a fraction of Ca2+ sparks in aged VSMCs, which is sensitive to the TRP channel blocker Gd3+ (100 µM), but insensitive to CaV1.2 and CaV3.2 channel blockade. Our data demonstrate that the VSMC CaV3.2‐RyR axis is down‐regulated by aging. This defective CaV3.2‐RyR coupling is counterbalanced by a Gd3+ sensitive Ca2+ pathway providing compensatory Ca2+ influx for triggering Ca2+ sparks in aged VSMCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号