首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   576篇
  免费   37篇
  613篇
  2022年   5篇
  2021年   5篇
  2019年   11篇
  2018年   6篇
  2017年   8篇
  2016年   7篇
  2015年   14篇
  2014年   19篇
  2013年   30篇
  2012年   44篇
  2011年   44篇
  2010年   21篇
  2009年   19篇
  2008年   33篇
  2007年   29篇
  2006年   24篇
  2005年   28篇
  2004年   34篇
  2003年   30篇
  2002年   25篇
  2001年   11篇
  1999年   10篇
  1998年   10篇
  1997年   2篇
  1996年   3篇
  1995年   8篇
  1994年   8篇
  1993年   3篇
  1992年   7篇
  1991年   6篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   6篇
  1986年   7篇
  1985年   9篇
  1984年   8篇
  1983年   8篇
  1982年   4篇
  1981年   6篇
  1980年   9篇
  1979年   4篇
  1978年   2篇
  1977年   7篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1972年   3篇
  1971年   6篇
  1970年   2篇
排序方式: 共有613条查询结果,搜索用时 15 毫秒
71.
72.
73.
Previous experimental studies of competition among foragers rarely distinguished between exploitation and interference competition. In many systems this separation is experimentally impossible without interfering with the natural behavior of the animals. Consequently, these studies can only demonstrate the combined effect of interference and exploitation on the forager’s feeding rate, namely, it usually decreases in a decelerating rate as a function of density. We suggest here a simple experimental and statistical procedure that facilitates the separation of the effects of interference from those of exploitation. This procedure includes manipulation of both predator density and the foraging experiment duration. The statistical analysis is based on multiple linear regression. The working assumption is that exploitation can be neglected at the beginning of the foraging experiment because, initially, predators do not experience diminishing returns in prey capture rates. Using both the results of an individual-based simulation and a field experiment dataset of gerbils foraging for seeds in an artificial food patch located in the field, we demonstrate that our procedure can successfully detect and separate the effect of interference from the combined overall effect of competition (i.e., interference plus exploitation). Inon Scharf and Ido Filin contributed equally to this paper.  相似文献   
74.
The powerful muscarinic antagonist [3H]quinuclidinyl benzilate (QNB) specifically binds to homogenates of Drosophila melanogaster head at a level of 65 ± 6 fmol/mg protein, with an apparent dissociation constant of 0.15–0.7 nM. The half-life of the ligand-receptor complex at 25°C is 30–40 min. Binding is inhibited by low concentrations of muscarinic ligands but not by low concentrations of nicotinic ligands, anticholinesterases or non-cholinergic drugs. Binding-sites are membrane bound and are inactivated by trypsin and by Triton X-100. Part of the activity (<20%) is released into a high speed supernatant by 2 M-NaCI. The gene coding for the putative muscarinic receptor in Drosophila is apparently not located adjacent to the gene for acetylcholinesterase  相似文献   
75.
76.
Green  A.  Dagan  Y.  Haim  A. 《Sleep and biological rhythms》2018,16(3):273-281

A major consequence of the invasion of digital media devices with screens equipped with light-emitting diode (LED) into bedrooms exposes the users to ongoing short wavelength (SWL) lighting during the evening and at night when under natural conditions, long wavelength are dominant. Results of several studies reveal a negative physiological, behavioral, and functional outcome of the exposure to SWL artificial light at night (ALAN) from digital media screens. The aims of our study are to assess the relationships between digital media usage, sleep patterns, subjective sleepiness, and attention abilities in adult Israeli citizens compared with Israeli adolescents. We recruited 280 adult participants using convenience sample method, 49% males and 51% females with an age range of 18–82. The participants filled out self-reporting novel and original questionnaires as follows: demographic, general health evaluation, sleep habits, and difficulties by the Pittsburgh Sleep Quality Index (PSQI) and the Karolinska Sleepiness Scale (KSS), prevalence, and usage patterns of digital media devices. Smartphones are the most used digital media device in the evening and after bedtime (the time one gets to sleep in bed). Israeli adults used smartphones for 30 min and TV for about 15 min after bedtime. We noted that excessive exposure to these devices at nighttime was associated with longer sleep latency (r = 0.192, p < 0.01) and decreased sleep hours (r = − 0.143, p < 0.05). Moreover, we found a negative correlation between attention abilities in the morning and the usage time of digital media at nighttime (r = − 0.155, p < 0.01). Exposure to digital screens at evening and nighttime was positively correlated with subjective sleepiness on the KSS (r = 0.135, p < 0.05, and r = 0.261, p < 0.01). To the best of our knowledge, this study is the first to explore the association between digital media screens usage, sleep, and concentration abilities in the Israeli adult.

  相似文献   
77.
The effects of pressure on structure and activity of recombinant human acetylcholinesterase (rHuAChE) were investigated up to a pressure of 300 MPa using gel electrophoresis under elevated hydrostatic pressure, fluorescence of bound 8-anilinonaphthalene-1-sulfonate (ANS) and activity measurements following exposure to high pressure. Study of wild-type enzyme and three single mutants (D74N, E202Q, E450A) and one sextuple mutant (E84Q/E292A/D349N/E358Q/E389Q/D390N) showed that pressure exerts a differential action on wild-type rHuAChE and its mutants, allowing estimation of the contribution of carboxylic amino acid side-chains to enzyme stability. Mutation of negatively charged residues D74 and E202 by polar side-chains strengthened heat or pressure stability. The mutation E450A and the sextuple mutation caused destabilization of the enzyme to pressure. Thermal inactivation data on mutants showed that all of them were stabilized against temperature. In conclusion, pressure and thermal stability of mutants provided evidence that the residue E202 is a determinant of structural and functional stability of HuAChE.  相似文献   
78.
Foraging theory postulates that interference is a foraging cost and affects patch exploitation and activity times. One such system contains two species of seed-eating gerbils inhabiting sandy habitats in the Negev Desert of Israel. Low population densities of the dominant species allowed us to examine the interaction between males and females of the subordinate species, Gerbillus andersoni allenbyi , as a function of interference and resource renewal. We used giving-up densities (GUDs; the amount of food left in a resource patch when a forager abandons the patch) in seed trays to quantify patch use by gerbils. By placing 6 trays at each foraging station and either presenting all 6 trays at the start of the night (pulse treatment) or presenting one tray at a station 6 times per night (renewal treatment), we were able to manipulate characteristics of resource renewal. We used radio telemetry to obtain an independent assessment of activity. Male and female G. a. allenbyi differed in their timing of activity, with males beginning earlier than females and remaining active later. This was most pronounced for the pulse treatment. For the renewal treatment, female activity in trays was more intense early in the night, but thereafter male activity was more intense. At the same time, telemetry showed that males and females did not differ in their total activity in or out of trays. This suggests that males begin their activity on the renewal treatment by exploiting the richest natural patches of seeds. Only later when these are depleted do they move to dominate the renewing seed trays. Finally, females exploited stabilized sand habitats more than did males, especially during the renewal treatment. Taken together, these findings suggest that male G. a. allenbyi interfere with foraging in females, causing temporal shifts in their use of space and resources.  相似文献   
79.
A new method is described for measuring environmental stress through the use of the duckweed (Lemna minor) rhizosphere.  相似文献   
80.
Here we dock a ligand onto a receptor surface allowing hinge-bending domain/substructural movements. Our approach mimics and manifests induced fit in molecular recognition. All angular rotations are allowed on the one hand, while a conformational space search is avoided on the other. Rather than dock each of the molecular parts separately with subsequent reconstruction of the consistently docked molecules, all parts are docked simultaneously while still utilizing the position of the hinge from the start. Like pliers closing on a screw, the receptor automatically closes on its ligand in the best surface-matching way. Movements are allowed either in the ligand or in the larger receptor, hence reproducing induced molecular fit. Hinge bending movements are frequently observed when molecules associate. There are numerous examples of open versus closed conformations taking place upon binding. Such movements are observed when the substrate binds to its respective enzyme. In particular, such movements are of interest in allosteric enzymes. The movements can involve entire domains, subdomains, loops, (other) secondary structure elements, or between any groups of atoms connected by flexible joints. We have implemented the hinges at points and at bonds. By allowing 3-dimensional (3-D) rotation at the hinge, several rotations about (consecutive or nearby) bonds are implicitly taken into account. Alternatively, if required, the point rotation can be restricted to bond rotation. Here we illustrate this hinge-bending docking approach and the insight into flexibility it provides on a complex of the calmodulin with its M13 ligand, positioning the hinges either in the ligand or in the larger receptor. This automated and efficient method is adapted from computer vision and robotics. It enables utilizing entire molecular surfaces rather than focusing a priori on active sites. Hence, allows attaining the overall optimally matching surfaces, the extent and type of motions which are involved. Here we do not treat the conformational flexibility of side-chains or of very small pieces of the molecules. Therefore, currently available methods addressing these issues and the method presented here, are complementary to each other, expanding the repertoire of computational docking tools foreseen to aid in studies of recognition, conformational flexibility and drug design. Proteins 32:159–174, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号