首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   441篇
  免费   31篇
  2022年   11篇
  2021年   10篇
  2020年   11篇
  2019年   4篇
  2018年   7篇
  2017年   5篇
  2016年   9篇
  2015年   19篇
  2014年   17篇
  2013年   27篇
  2012年   28篇
  2011年   19篇
  2010年   11篇
  2009年   9篇
  2008年   17篇
  2007年   19篇
  2006年   25篇
  2005年   9篇
  2004年   13篇
  2003年   21篇
  2002年   10篇
  2001年   16篇
  2000年   17篇
  1999年   11篇
  1998年   8篇
  1997年   4篇
  1996年   9篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   8篇
  1991年   6篇
  1990年   7篇
  1989年   6篇
  1988年   5篇
  1987年   6篇
  1986年   5篇
  1985年   2篇
  1984年   8篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1977年   3篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1967年   3篇
  1965年   2篇
  1942年   2篇
排序方式: 共有472条查询结果,搜索用时 31 毫秒
101.
Interleukin-1β (IL-1β) is a master cytokine involved in initiating the innate immune response in vertebrates (Dinarello, C. A. (1994) FASEB J. 8, 1314–1325). It is first synthesized as an inactive 269-residue precursor (pro-interleukin-1β or pro-IL-1β). Pro-IL-1β requires processing by caspase-1 to generate the active, mature 153-residue cytokine. In this study, we combined hydrogen/deuterium exchange mass spectrometry, circular dichroism spectroscopy, and enzymatic digestion comparative studies to investigate the configurational landscape of pro-IL-1β and the role the N terminus plays in modulating the landscape. We find that the N terminus keeps pro-IL-1β in a protease-labile state while maintaining a core region of stability in the C-terminal region, the eventual mature protein. In mature IL-1β, this highly protected region maps back to the area protected earliest in the NMR studies characterizing an on-route kinetic refolding intermediate. This protected region also encompasses two important functional loops that participate in the IL-1β/receptor binding interface required for biological activity. We propose that the purpose of the N-terminal precursor region in pro-IL-1β is to suppress the function of the eventual mature region while keeping a structurally and also functionally important core region primed for the final folding into the native, active state of the mature protein. The presence of the self-inhibiting precursor region provides yet another layer of regulation in the life cycle of this important cytokine.Nearly all cell types respond to interleukin (IL)-1β,4 in a very sensitive manner, via binding to the interleukin-1 receptor type 1 (IL-1RI) (2). Although essential in the immune response, overproduction of IL-1β can lead to both acute (sepsis) as well as chronic (rheumatoid arthritis, atherosclerosis, obesity, and diabetes) disease states (3). Thus, the expression, activation, and secretion of this cytokine are tightly controlled (4). Although many cell types express IL-1β, it is predominately produced and secreted by monocytes and macrophages (1). The protein is synthesized as a biologically inactive 269-residue precursor molecule, pro-interleukin-1β (pro-IL-1β), and the 153-residue active mature IL-1β is generated from the C-terminal domain. Processing of the proprotein involves the recently discovered NALP-1 and NALP-3 inflammasomes, which are responsible for activating procaspase-1 (5). The inflammasome function is integral in wound repair as well as for combating infection (69).In vivo, the 31-kDa pro-IL-1β precursor is processed to the active C-terminal 17-kDa form by the interleukin-1 converting enzyme, caspase-1 (10, 11). Caspase-1 is a cysteine protease that recognizes two cleavage sites in pro-IL-1β, the Asp27↓Gly28 and Asp116↓Ala117 peptide bonds (Fig. 1A). These cleavage sites are conserved across mammals (1214). The activation pathway is believed to proceed with cleavage first at Asp27↓Gly28 (site 1) followed by Asp116↓Ala117 (site 2). These processing events lead to the generation of the mature, active IL-1β from the C-terminal domain of pro-IL-1β (15). After cleavage, the mature protein is exported via a cell-specific non-classical pathway (16). The events leading from caspase-1 activation to active IL-1β secretion are poorly understood and constitute an area of active research (1620).Open in a separate windowFIGURE 1.A, a schematic of pro-interleukin-1β processing by caspase-1. The two caspase-1 cleavage sites are labeled by residue/number. The products for the cleavage scenario are represented as smaller blocks, and the final mature protein as the actual three-dimensional structure shown in blue (Protein Data Bank code 6I1B (74)). B, panel i, important features are highlighted on the structure of mature IL-1β. Residues Tyr68 (residue 184 in pro-IL-1β) and Trp120 (236 in pro-IL-1β) are indicated by red side chain stick representation. The two loops important for binding at the third Ig domain of the receptor are indicated by blue spheres (the basic/hydrophobic 90s loop, which encompasses residues 85–99 in mature and 201–216 in pro-IL-1β) and yellow spheres (the β-bulge, residues 46–53 and 162–169). The numbering corresponds to mature and pro-IL-1β, respectively. Panel ii, after rotating the structure 90°, the individual trefoils are labeled by color (trefoil 1 in orange, trefoil 2 in yellow, and trefoil 3 in blue). The structural features described in panel i maintain the same coloring. Panel iii, the two-dimensional splay diagram of the trefoils labeled by color as in panel ii showing the 3-fold symmetry of the secondary structure elements.The native structure of IL-1β is classified as a β-trefoil. The global protein-fold contains three pseudo-symmetric βββloopβ motifs that coalesce to form a six-stranded barrel with three hairpins that form a six-stranded cap closing one end of the barrel (see Fig. 1B) (21). Mature IL-1β refolds relatively slowly (22), accessing multiple routes including a major route with a detectable intermediate population (23, 24). Recently, this slow folding has been attributed to repacking of a functionally important loop (the β-bulge) in the mature protein (see Fig. 1B, i) (2527). Although much information is known about the structure, folding, and function of mature IL-1β, there is little information available on pro-IL-1β, despite the central importance of this molecule in mediating critical inflammatory processes (2830). What is known is that the presence of the N-terminal 116 amino acids results in a highly protease-sensitive protein with no biological activity (31). Folding of mature IL-1β is believed to occur after cleavage of pro-IL-1β in vivo. Therefore, structural analysis of the precursor is essential for a better understanding of the role the precursor region plays in regulating folding events leading to the generation of the eventual mature protein.The crystal structure of pro-IL-1β has not been determined, despite approximately 25 years of intensive efforts directed toward this goal, as a result of the dynamic nature of this molecule (3234). Therefore, we used structure-sensitive methods to compare pro-IL-1β in reference to the mature protein. Optical methods in combination with hydrogen/deuterium exchange mass spectrometric analysis (DXMS) and enzymatic digestion were used to investigate how the N-terminal precursor region modulates the properties of the C-terminal mature domain. DXMS is a well established technique for characterizing proteins refractory to standard crystallographic or NMR structure determination techniques (3537). Taken together, our results indicate that the N terminus inhibits folding to the fully active trefoil structure in the C-terminal region, but maintains the protein in a conformation that is primed for efficient folding upon release after caspase-1 cleavage.  相似文献   
102.
103.
To update evidence‐based best practice guidelines for collection of data on weight loss surgery (WLS). Systematic search of English‐language literature in MEDLINE and the Cochrane Library on WLS and data collection, registries, risk adjustment, accreditation, benchmarks, and administrative and outcomes databases published between April 2004 and May 2007. Use of key words to narrow the search for a selective review of abstracts, retrieval of full articles, and grading of evidence according to systems used in established evidence‐based models. During our search, we identified 212 papers; the 63 most relevant were reviewed in detail. Most data collection on WLS has relied on administrative data sets, single‐institution studies, and other sources that are not WLS specific. A six‐center, nationwide study involving data collection has been started by the longitudinal assessment of bariatric surgery, but results are not yet available. Two WLS‐specific, longitudinal, national data collection systems are about to be implemented. Key factors in patient safety include data collection for all weight loss procedures; prospective, risk‐adjusted, universal, benchmarked, longitudinal data collection systems; and use of WLS‐specific data points that track clinical effectiveness and complications following WLS. Data collection will need to include assessments of novel therapies and specific subgroups (e.g., adolescents, the elderly, and individuals who are at the greatest risk or have the most to gain from WLS). Quality indicators, including metrics on processes of care and determination of outliers, need to be established and monitored to advance patient safety and quality improvement.  相似文献   
104.
Tumor development in glandular tissues is associated with structural alterations in the hollow ducts and spherical structures that comprise such tissues. We describe a signaling axis involving sustained activation of the GTP-binding protein, ARF6, that provokes dramatic changes in the organization of epithelial cysts, reminiscent of tumorigenic glandular phenotypes. In reconstituted basement membrane cultures of renal epithelial cysts, enhanced ARF6 activation induces the formation of cell-filled glandular structures with multiple lumens and disassembled cadherin-based cell–cell contacts. All of these alterations are accompanied by growth factor receptor internalization into signaling endosomes and reversed by blocking ARF6 activation or receptor endocytosis. Receptor localization in signaling endosomes results in hyperactive extracellular signal-regulated kinase signaling leading to Bcl-2 stabilization and aberrant cysts. Similarly, formation of hyperproliferative and disorganized mammary acini induced by chronic stimulation of colony-stimulating factor 1 receptor is coupled to endogenous ARF6 activation and constitutive receptor internalization and is reversed by ARF6 inhibition. These findings identify a previously unrecognized link between ARF6-regulated receptor internalization and events that drive dramatic alterations in cyst morphogenesis providing new mechanistic insight into the molecular processes that can promote epithelial glandular disruption.  相似文献   
105.
Acute effects of sex steroid hormones likely contribute to the observation that post-pubescent males have shorter QT intervals than females. However, the specific role for hormones in modulating cardiac electrophysiological parameters and arrhythmia vulnerability is unclear. Here we use a computational modeling approach to incorporate experimentally measured effects of physiological concentrations of testosterone, estrogen and progesterone on cardiac ion channel targets. We then study the hormone effects on ventricular cell and tissue dynamics comprised of Faber-Rudy computational models. The “female” model predicts changes in action potential duration (APD) at different stages of the menstrual cycle that are consistent with clinically observed QT interval fluctuations. The “male” model predicts shortening of APD and QT interval at physiological testosterone concentrations. The model suggests increased susceptibility to drug-induced arrhythmia when estradiol levels are high, while testosterone and progesterone are apparently protective. Simulations predict the effects of sex steroid hormones on clinically observed QT intervals and reveal mechanisms of estrogen-mediated susceptibility to prolongation of QT interval. The simulations also indicate that acute effects of estrogen are not alone sufficient to cause arrhythmia triggers and explain the increased risk of females to Torsades de Pointes. Our results suggest that acute effects of sex steroid hormones on cardiac ion channels are sufficient to account for some aspects of gender specific susceptibility to long-QT linked arrhythmias.  相似文献   
106.
The sinoatrial node (SAN) is a complex structure that exhibits anatomical and functional heterogeneity which may depend on: 1) The existence of distinct cell populations, 2) electrotonic influences of the surrounding atrium, 3) the presence of a high density of fibroblasts, and 4) atrial cells intermingled within the SAN. Our goal was to utilize a computer model to predict critical determinants and modulators of excitation and conduction in the SAN. We built a theoretical "non-uniform" model composed of distinct central and peripheral SAN cells and a "uniform" model containing only central cells connected to the atrium. We tested the effects of coupling strength between SAN cells in the models, as well as the effects of fibroblasts and interspersed atrial cells. Although we could simulate single cell experimental data supporting the "multiple cell type" hypothesis, 2D "non-uniform" models did not simulate expected tissue behavior, such as central pacemaking. When we considered the atrial effects alone in a simple homogeneous "uniform" model, central pacemaking initiation and impulse propagation in simulations were consistent with experiments. Introduction of fibroblasts in our simulated tissue resulted in various effects depending on the density, distribution, and fibroblast-myocyte coupling strength. Incorporation of atrial cells in our simulated SAN tissue had little effect on SAN electrophysiology. Our tissue model simulations suggest atrial electrotonic effects as plausible to account for SAN heterogeneity, sequence, and rate of propagation. Fibroblasts can act as obstacles, current sinks or shunts to conduction in the SAN depending on their orientation, density, and coupling.  相似文献   
107.

Background

The six most important cost-effective policies on tobacco control can be measured by the Tobacco Control Scale (TCS). The objective of our study was to describe the correlation between the TCS and smoking prevalence, self-reported exposure to secondhand smoke (SHS) and attitudes towards smoking restrictions in the 27 countries of the European Union (EU27).

Methods/Principal Findings

Ecologic study in the EU27. We used data from the TCS in 2007 and from the Eurobarometer on Tobacco Survey in 2008. We analysed the relations between the TCS and prevalence of smoking, self-reported exposure to SHS (home and work), and attitudes towards smoking bans by means of scatter plots and Spearman rank-correlation coefficients (rsp). Among the EU27, smoking prevalence varied from 22.6% in Slovenia to 42.1% in Greece. Austria was the country with the lowest TCS score (35) and the UK had the highest one (93). The correlation between smoking prevalence and TCS score was negative (rsp = −0.42, p = 0.03) and the correlation between TCS score and support to smoking bans in all workplaces was positive (rsp = 0.47, p = 0.01 in restaurants; rsp = 0.5, p = 0.008 in bars, pubs, and clubs; and rsp = 0.31, p = 0.12 in other indoor workplaces). The correlation between TCS score and self-reported exposure to SHS was negative, but statistically non-significant.

Conclusions/Significance

Countries with a higher score in the TCS have higher support towards smoking bans in all workplaces (including restaurants, bars, pubs and clubs, and other indoor workplaces). TCS scores were strongly, but not statistically, associated with a lower prevalence of smokers and a lower self-reported exposure to SHS.  相似文献   
108.
Understanding the cell biology of many proteins requires knowledge of their in vivo topological distribution. Here we describe a new fluorescence-based technique, fluorescence protease protection (FPP), for investigating the topology of proteins and for localizing protein subpopulations within the complex environment of the living cell. In the FPP assay, adapted from biochemical protease protection assays, GFP fusion proteins are used as noninvasive tools to obtain details of protein topology and localization within living cells in a rapid and straightforward manner. To demonstrate the broad applicability of FPP, we used the technique to define the topology of proteins localized to a wide range of organelles including the endoplasmic reticulum (ER), Golgi apparatus, mitochondria, peroxisomes and autophagosomes. The success of the FPP assay in characterizing the topology of the tested proteins within their appropriate compartments suggests this technique has wide applicability in studying protein topology and localization within the cell.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号