首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5051篇
  免费   459篇
  国内免费   844篇
  6354篇
  2024年   10篇
  2023年   78篇
  2022年   154篇
  2021年   244篇
  2020年   191篇
  2019年   231篇
  2018年   206篇
  2017年   152篇
  2016年   230篇
  2015年   297篇
  2014年   386篇
  2013年   402篇
  2012年   504篇
  2011年   498篇
  2010年   321篇
  2009年   273篇
  2008年   327篇
  2007年   288篇
  2006年   270篇
  2005年   195篇
  2004年   185篇
  2003年   181篇
  2002年   154篇
  2001年   96篇
  2000年   87篇
  1999年   73篇
  1998年   62篇
  1997年   44篇
  1996年   38篇
  1995年   16篇
  1994年   32篇
  1993年   16篇
  1992年   20篇
  1991年   12篇
  1990年   7篇
  1989年   6篇
  1988年   6篇
  1987年   12篇
  1986年   5篇
  1984年   5篇
  1980年   5篇
  1978年   4篇
  1977年   2篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
  1971年   4篇
  1970年   2篇
  1969年   2篇
  1967年   2篇
排序方式: 共有6354条查询结果,搜索用时 0 毫秒
111.
Li  Rong  Wu  Bing  He  Miaoqing  Zhang  Peng  Zhang  Qinbin  Deng  Jing  Yuan  Jinxian  Chen  Yangmei 《Neurochemical research》2020,45(9):1997-2008
Neurochemical Research - The number of γ-aminobutyric acid type A receptors (GABAARs) expressed on the surface membrane and at synaptic sites is implicated in the enhanced excitation of...  相似文献   
112.
113.
Lung cancer ranks topmost among the most frequently diagnosed cancers. Despite increasing research, there are still unresolved mysteries in the molecular mechanism of lung cancer. Long noncoding RNA small nucleolar RNA host gene 11 (SNHG11) was found to be upregulated in lung cancer and facilitated lung cancer cell proliferation, migration, invasion, and epithelial–mesenchymal transition progression while suppressed cell apoptosis. Moreover, the high expression of SNHG11 was correlated with poor prognosis of lung cancer patients, TNM stage, and tumor size. Further assays demonstrated that SNHG11 functioned in lung cancer cells via Wnt/β-catenin signaling pathway. Subsequently, Wnt/β-catenin pathway was found to be activated through SNHG11/miR-4436a/CTNNB1 ceRNA axis. As inhibiting miR-4436 could only partly rescue the suppression of cell function induced by silencing SNHG11, it was suspected that β-catenin might enter cell nucleus through other pathways. Mechanism investigation proved that SNHG11 would directly bind with β-catenin to activate classic Wnt pathway. Subsequently, in vivo tumorigenesis was also demonstrated to be enhanced by SNHG11. Hence, SNHG11 was found to promote lung cancer progression by activating Wnt/β-catenin pathway in two different patterns, implying that SNHG11 might contribute to lung cancer treatment by acting as a therapeutic target.  相似文献   
114.
115.
116.
The type II CRISPR/Cas system from Streptococcus pyogenes and its simplified derivative, the Cas9/single guide RNA (sgRNA) system, have emerged as potent new tools for targeted gene knockout in bacteria, yeast, fruit fly, zebrafish and human cells. Here, we describe adaptations of these systems leading to successful expression of the Cas9/sgRNA system in two dicot plant species, Arabidopsis and tobacco, and two monocot crop species, rice and sorghum. Agrobacterium tumefaciens was used for delivery of genes encoding Cas9, sgRNA and a non-fuctional, mutant green fluorescence protein (GFP) to Arabidopsis and tobacco. The mutant GFP gene contained target sites in its 5′ coding regions that were successfully cleaved by a CAS9/sgRNA complex that, along with error-prone DNA repair, resulted in creation of functional GFP genes. DNA sequencing confirmed Cas9/sgRNA-mediated mutagenesis at the target site. Rice protoplast cells transformed with Cas9/sgRNA constructs targeting the promoter region of the bacterial blight susceptibility genes, OsSWEET14 and OsSWEET11, were confirmed by DNA sequencing to contain mutated DNA sequences at the target sites. Successful demonstration of the Cas9/sgRNA system in model plant and crop species bodes well for its near-term use as a facile and powerful means of plant genetic engineering for scientific and agricultural applications.  相似文献   
117.
Aging is an inevitable process that occurs in the whole body system accompanying with many functional and morphological changes. Inflammation is known as one of age-related factors, and inflammatory changes could enhance mortality risk. In this study, we compared immunoreactivities of inflammatory cytokines, such as interleukin (IL)-2 (a pro-inflammatory cytokine), its receptor (IL-2R), IL-4 (an anti-inflammatory cytokine), and its receptor (IL-4R) in the cervical and lumbar spinal cord of young adult (2–3 years old) and aged (10–12 years old) beagle dogs using immunohistochemistry and western blotting. IL-2 and IL-2R-immunoreactive nerve cells were found throughout the gray matter of the cervical and lumbar spinal cord of young adult and aged dogs. In the spinal cord neurons of the aged dog, immunoreactivity and protein levels were apparently increased compared with those in the young adult dog. Change patterns of IL-4- and IL-4R-immunoreactive cells and their protein levels were also similar to those in IL-2 and IL-2R; however, IL-4 and IL-4R immunoreactivity in the periphery of the neuronal cytoplasm in the aged dog was much stronger than that in the young adult dog. These results indicate that the increase of inflammatory cytokines and their receptors in the aged spinal cord might be related to maintaining a balance of inflammatory reaction in the spinal cord during normal aging.  相似文献   
118.
Quercetin has been reported to protect testicular cells from oxidative damage induced by environmental chemicals. In this study, we isolated interstitial Leydig cells (ILCs) from immature rats, set-up ILCs culture, co-treated cells with atrazine (ATZ) and quercetin (QT), evaluated toxicity, and measured the expression levels of antioxidant enzymes and nuclear factor-kappaB (NF-κB) and levels of steroidogenic enzymes. ATZ decreased ILCs viability at concentrations higher than 10 μg/mL and increased reactive oxygen species, malondialdehyde (MDA), and glutathione levels. ATZ also increased glutathione peroxidase, glutathione reductase, and glutathione-S-transferase and decreased superoxide dismutase-1 (sod1) and superoxide dismutase-2 (sod2) messenger RNA (mRNA) levels which were prevented by QT. The changes in the MDA levels and lactate dehydrogenase leakage induced by ATZ (50 μg/mL) were also prevented on co-treatment with QT (50 μM). Furthermore, ATZ-induced 3β- and 17β-hydroxysteroid dehydrogenase activities and NF-κB-expressions at the mRNA and protein levels were also recovered to control value on co-treatment with QT. These data showed that QT protected against ATZ-induced ILCs toxicity by restoring the expression of NF-κB and steroidogenic activity and by preventing the oxidative stress.  相似文献   
119.
Because of having many low molecular mass substrates, CYP2E1 is of particular interests to the pharmaceutical industry. Many evidences showed that this enzyme can adopt multiple substrates to significantly reduce the oxidation rate of the substrates. The detailed mechanism for this observation is still unclear. In the current study, we employed GPU‐accelerated molecular dynamics simulations to study the multiple‐binding mode of human CYP2E1, with an aim of offering a mechanistic explanation for the unexplained multiple‐substrate binding. Our results showed that Thr303 and Phe478 were key factors for the substrate recognition and multiple‐substrate binding. The former can form a significant hydrogen bond to recognize and position the substrate in the productive binding orientation in the active site. The latter acted as a mediator for the substrate communications via π–π stacking interactions. In the multiple‐binding mode, the aforementioned π–π stacking interactions formed by the aromatic rings of both substrates and Phe478 drove the first substrate far away from the catalytic center, orienting in an additional binding position and going against the substrate metabolism. All these findings could give atomic insights into the detailed mechanism for the multiple‐substrate binding in human CYP2E1, providing useful information for the drug metabolism mechanism and personalized use of clinical drugs. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   
120.
BackgroundATM plays an important role in response to DNA damage, while the roles of ATM in radiation-induced autophagy are still unclear in cervical cancer cells.MethodsHuman cervical cancer cells, Hela, were used, and cell models with ATM?/? and MAPK14?/? were established by gene engineering. Western blot was implemented to detect protein expression. MDC staining and GFP-LC3 relocalization were used to detect autophagy. CCK-8 was used to detect cell viability. Radiosensitivity was analyzed by colony formation assays. Co-immunoprecipitation was used to detect the interaction between different proteins, and apoptosis was detected by flow cytometry.ResultsAfter radiation autophagy was induced, illustrated by the increase of MAPLC3-II/MAPLC3-I ratio and decrease of p62, and phosphorylation of ATM simultaneously increased. ATM?/? cells displayed hypersensitivity but had no influence on IR-induced apoptosis. Then inhibitor of ATM, KU55933, ATM and MAPK14 silencing were used, and autophagy was induced by IR more than 200% in control, and only by 35.72%, 53.18% and 24.76% in KU55933-treated cells, ATM?/? and MAPK14?/? cells, respectively. KU55933 inhibited IR-induced autophagy by activating mTOR pathways. ATM silencing decreased the expression of MAPK14 and mTOR signals significantly. Beclin's bond to PI3KIII and their interaction increased after IR, while in ATM?/? and MAPK14?/? cells this interaction decreased after IR. Both ATM and MAPK14 interacted with Beclin, while ATM?/? and MAPK14?/? cells showed no interaction.ConclusionsATM could promote IR-induced autophagy via the MAPK14 pathway, the mTOR pathway, and Beclin/PI3KIII complexes, which contributed to the effect of ATM on radiosensitivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号